152 lines
4.8 KiB
Python
152 lines
4.8 KiB
Python
|
import glob
|
||
|
import os
|
||
|
import random
|
||
|
from multiprocessing import Manager
|
||
|
from typing import List, Tuple
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from torch.utils.data import Dataset
|
||
|
|
||
|
|
||
|
class WaveGradDataset(Dataset):
|
||
|
"""
|
||
|
WaveGrad Dataset searchs for all the wav files under root path
|
||
|
and converts them to acoustic features on the fly and returns
|
||
|
random segments of (audio, feature) couples.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
ap,
|
||
|
items,
|
||
|
seq_len,
|
||
|
hop_len,
|
||
|
pad_short,
|
||
|
conv_pad=2,
|
||
|
is_training=True,
|
||
|
return_segments=True,
|
||
|
use_noise_augment=False,
|
||
|
use_cache=False,
|
||
|
verbose=False,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.ap = ap
|
||
|
self.item_list = items
|
||
|
self.seq_len = seq_len if return_segments else None
|
||
|
self.hop_len = hop_len
|
||
|
self.pad_short = pad_short
|
||
|
self.conv_pad = conv_pad
|
||
|
self.is_training = is_training
|
||
|
self.return_segments = return_segments
|
||
|
self.use_cache = use_cache
|
||
|
self.use_noise_augment = use_noise_augment
|
||
|
self.verbose = verbose
|
||
|
|
||
|
if return_segments:
|
||
|
assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len."
|
||
|
self.feat_frame_len = seq_len // hop_len + (2 * conv_pad)
|
||
|
|
||
|
# cache acoustic features
|
||
|
if use_cache:
|
||
|
self.create_feature_cache()
|
||
|
|
||
|
def create_feature_cache(self):
|
||
|
self.manager = Manager()
|
||
|
self.cache = self.manager.list()
|
||
|
self.cache += [None for _ in range(len(self.item_list))]
|
||
|
|
||
|
@staticmethod
|
||
|
def find_wav_files(path):
|
||
|
return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.item_list)
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
item = self.load_item(idx)
|
||
|
return item
|
||
|
|
||
|
def load_test_samples(self, num_samples: int) -> List[Tuple]:
|
||
|
"""Return test samples.
|
||
|
|
||
|
Args:
|
||
|
num_samples (int): Number of samples to return.
|
||
|
|
||
|
Returns:
|
||
|
List[Tuple]: melspectorgram and audio.
|
||
|
|
||
|
Shapes:
|
||
|
- melspectrogram (Tensor): :math:`[C, T]`
|
||
|
- audio (Tensor): :math:`[T_audio]`
|
||
|
"""
|
||
|
samples = []
|
||
|
return_segments = self.return_segments
|
||
|
self.return_segments = False
|
||
|
for idx in range(num_samples):
|
||
|
mel, audio = self.load_item(idx)
|
||
|
samples.append([mel, audio])
|
||
|
self.return_segments = return_segments
|
||
|
return samples
|
||
|
|
||
|
def load_item(self, idx):
|
||
|
"""load (audio, feat) couple"""
|
||
|
# compute features from wav
|
||
|
wavpath = self.item_list[idx]
|
||
|
|
||
|
if self.use_cache and self.cache[idx] is not None:
|
||
|
audio = self.cache[idx]
|
||
|
else:
|
||
|
audio = self.ap.load_wav(wavpath)
|
||
|
|
||
|
if self.return_segments:
|
||
|
# correct audio length wrt segment length
|
||
|
if audio.shape[-1] < self.seq_len + self.pad_short:
|
||
|
audio = np.pad(
|
||
|
audio, (0, self.seq_len + self.pad_short - len(audio)), mode="constant", constant_values=0.0
|
||
|
)
|
||
|
assert (
|
||
|
audio.shape[-1] >= self.seq_len + self.pad_short
|
||
|
), f"{audio.shape[-1]} vs {self.seq_len + self.pad_short}"
|
||
|
|
||
|
# correct the audio length wrt hop length
|
||
|
p = (audio.shape[-1] // self.hop_len + 1) * self.hop_len - audio.shape[-1]
|
||
|
audio = np.pad(audio, (0, p), mode="constant", constant_values=0.0)
|
||
|
|
||
|
if self.use_cache:
|
||
|
self.cache[idx] = audio
|
||
|
|
||
|
if self.return_segments:
|
||
|
max_start = len(audio) - self.seq_len
|
||
|
start = random.randint(0, max_start)
|
||
|
end = start + self.seq_len
|
||
|
audio = audio[start:end]
|
||
|
|
||
|
if self.use_noise_augment and self.is_training and self.return_segments:
|
||
|
audio = audio + (1 / 32768) * torch.randn_like(audio)
|
||
|
|
||
|
mel = self.ap.melspectrogram(audio)
|
||
|
mel = mel[..., :-1] # ignore the padding
|
||
|
|
||
|
audio = torch.from_numpy(audio).float()
|
||
|
mel = torch.from_numpy(mel).float().squeeze(0)
|
||
|
return (mel, audio)
|
||
|
|
||
|
@staticmethod
|
||
|
def collate_full_clips(batch):
|
||
|
"""This is used in tune_wavegrad.py.
|
||
|
It pads sequences to the max length."""
|
||
|
max_mel_length = max([b[0].shape[1] for b in batch]) if len(batch) > 1 else batch[0][0].shape[1]
|
||
|
max_audio_length = max([b[1].shape[0] for b in batch]) if len(batch) > 1 else batch[0][1].shape[0]
|
||
|
|
||
|
mels = torch.zeros([len(batch), batch[0][0].shape[0], max_mel_length])
|
||
|
audios = torch.zeros([len(batch), max_audio_length])
|
||
|
|
||
|
for idx, b in enumerate(batch):
|
||
|
mel = b[0]
|
||
|
audio = b[1]
|
||
|
mels[idx, :, : mel.shape[1]] = mel
|
||
|
audios[idx, : audio.shape[0]] = audio
|
||
|
|
||
|
return mels, audios
|