ai-content-maker/.venv/Lib/site-packages/TTS/vocoder/datasets/wavegrad_dataset.py

152 lines
4.8 KiB
Python

import glob
import os
import random
from multiprocessing import Manager
from typing import List, Tuple
import numpy as np
import torch
from torch.utils.data import Dataset
class WaveGradDataset(Dataset):
"""
WaveGrad Dataset searchs for all the wav files under root path
and converts them to acoustic features on the fly and returns
random segments of (audio, feature) couples.
"""
def __init__(
self,
ap,
items,
seq_len,
hop_len,
pad_short,
conv_pad=2,
is_training=True,
return_segments=True,
use_noise_augment=False,
use_cache=False,
verbose=False,
):
super().__init__()
self.ap = ap
self.item_list = items
self.seq_len = seq_len if return_segments else None
self.hop_len = hop_len
self.pad_short = pad_short
self.conv_pad = conv_pad
self.is_training = is_training
self.return_segments = return_segments
self.use_cache = use_cache
self.use_noise_augment = use_noise_augment
self.verbose = verbose
if return_segments:
assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len."
self.feat_frame_len = seq_len // hop_len + (2 * conv_pad)
# cache acoustic features
if use_cache:
self.create_feature_cache()
def create_feature_cache(self):
self.manager = Manager()
self.cache = self.manager.list()
self.cache += [None for _ in range(len(self.item_list))]
@staticmethod
def find_wav_files(path):
return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True)
def __len__(self):
return len(self.item_list)
def __getitem__(self, idx):
item = self.load_item(idx)
return item
def load_test_samples(self, num_samples: int) -> List[Tuple]:
"""Return test samples.
Args:
num_samples (int): Number of samples to return.
Returns:
List[Tuple]: melspectorgram and audio.
Shapes:
- melspectrogram (Tensor): :math:`[C, T]`
- audio (Tensor): :math:`[T_audio]`
"""
samples = []
return_segments = self.return_segments
self.return_segments = False
for idx in range(num_samples):
mel, audio = self.load_item(idx)
samples.append([mel, audio])
self.return_segments = return_segments
return samples
def load_item(self, idx):
"""load (audio, feat) couple"""
# compute features from wav
wavpath = self.item_list[idx]
if self.use_cache and self.cache[idx] is not None:
audio = self.cache[idx]
else:
audio = self.ap.load_wav(wavpath)
if self.return_segments:
# correct audio length wrt segment length
if audio.shape[-1] < self.seq_len + self.pad_short:
audio = np.pad(
audio, (0, self.seq_len + self.pad_short - len(audio)), mode="constant", constant_values=0.0
)
assert (
audio.shape[-1] >= self.seq_len + self.pad_short
), f"{audio.shape[-1]} vs {self.seq_len + self.pad_short}"
# correct the audio length wrt hop length
p = (audio.shape[-1] // self.hop_len + 1) * self.hop_len - audio.shape[-1]
audio = np.pad(audio, (0, p), mode="constant", constant_values=0.0)
if self.use_cache:
self.cache[idx] = audio
if self.return_segments:
max_start = len(audio) - self.seq_len
start = random.randint(0, max_start)
end = start + self.seq_len
audio = audio[start:end]
if self.use_noise_augment and self.is_training and self.return_segments:
audio = audio + (1 / 32768) * torch.randn_like(audio)
mel = self.ap.melspectrogram(audio)
mel = mel[..., :-1] # ignore the padding
audio = torch.from_numpy(audio).float()
mel = torch.from_numpy(mel).float().squeeze(0)
return (mel, audio)
@staticmethod
def collate_full_clips(batch):
"""This is used in tune_wavegrad.py.
It pads sequences to the max length."""
max_mel_length = max([b[0].shape[1] for b in batch]) if len(batch) > 1 else batch[0][0].shape[1]
max_audio_length = max([b[1].shape[0] for b in batch]) if len(batch) > 1 else batch[0][1].shape[0]
mels = torch.zeros([len(batch), batch[0][0].shape[0], max_mel_length])
audios = torch.zeros([len(batch), max_audio_length])
for idx, b in enumerate(batch):
mel = b[0]
audio = b[1]
mels[idx, :, : mel.shape[1]] = mel
audios[idx, : audio.shape[0]] = audio
return mels, audios