55 lines
1.8 KiB
Python
55 lines
1.8 KiB
Python
|
from typing import Optional, Dict, cast
|
||
|
|
||
|
import chainer
|
||
|
|
||
|
from . import RearrangeMixin, ReduceMixin
|
||
|
from ._einmix import _EinmixMixin
|
||
|
|
||
|
__author__ = "Alex Rogozhnikov"
|
||
|
|
||
|
|
||
|
class Rearrange(RearrangeMixin, chainer.Link):
|
||
|
def __call__(self, x):
|
||
|
return self._apply_recipe(x)
|
||
|
|
||
|
|
||
|
class Reduce(ReduceMixin, chainer.Link):
|
||
|
def __call__(self, x):
|
||
|
return self._apply_recipe(x)
|
||
|
|
||
|
|
||
|
class EinMix(_EinmixMixin, chainer.Link):
|
||
|
def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound):
|
||
|
uniform = chainer.variable.initializers.Uniform
|
||
|
with self.init_scope():
|
||
|
self.weight = chainer.variable.Parameter(uniform(weight_bound), weight_shape)
|
||
|
if bias_shape is not None:
|
||
|
self.bias = chainer.variable.Parameter(uniform(bias_bound), bias_shape)
|
||
|
else:
|
||
|
self.bias = None
|
||
|
|
||
|
def _create_rearrange_layers(
|
||
|
self,
|
||
|
pre_reshape_pattern: Optional[str],
|
||
|
pre_reshape_lengths: Optional[Dict],
|
||
|
post_reshape_pattern: Optional[str],
|
||
|
post_reshape_lengths: Optional[Dict],
|
||
|
):
|
||
|
self.pre_rearrange = None
|
||
|
if pre_reshape_pattern is not None:
|
||
|
self.pre_rearrange = Rearrange(pre_reshape_pattern, **cast(dict, pre_reshape_lengths))
|
||
|
|
||
|
self.post_rearrange = None
|
||
|
if post_reshape_pattern is not None:
|
||
|
self.post_rearrange = Rearrange(post_reshape_pattern, **cast(dict, post_reshape_lengths))
|
||
|
|
||
|
def __call__(self, input):
|
||
|
if self.pre_rearrange is not None:
|
||
|
input = self.pre_rearrange(input)
|
||
|
result = chainer.functions.einsum(self.einsum_pattern, input, self.weight)
|
||
|
if self.bias is not None:
|
||
|
result = result + self.bias
|
||
|
if self.post_rearrange is not None:
|
||
|
result = self.post_rearrange(result)
|
||
|
return result
|