ai-content-maker/.venv/Lib/site-packages/einops/layers/chainer.py

55 lines
1.8 KiB
Python

from typing import Optional, Dict, cast
import chainer
from . import RearrangeMixin, ReduceMixin
from ._einmix import _EinmixMixin
__author__ = "Alex Rogozhnikov"
class Rearrange(RearrangeMixin, chainer.Link):
def __call__(self, x):
return self._apply_recipe(x)
class Reduce(ReduceMixin, chainer.Link):
def __call__(self, x):
return self._apply_recipe(x)
class EinMix(_EinmixMixin, chainer.Link):
def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound):
uniform = chainer.variable.initializers.Uniform
with self.init_scope():
self.weight = chainer.variable.Parameter(uniform(weight_bound), weight_shape)
if bias_shape is not None:
self.bias = chainer.variable.Parameter(uniform(bias_bound), bias_shape)
else:
self.bias = None
def _create_rearrange_layers(
self,
pre_reshape_pattern: Optional[str],
pre_reshape_lengths: Optional[Dict],
post_reshape_pattern: Optional[str],
post_reshape_lengths: Optional[Dict],
):
self.pre_rearrange = None
if pre_reshape_pattern is not None:
self.pre_rearrange = Rearrange(pre_reshape_pattern, **cast(dict, pre_reshape_lengths))
self.post_rearrange = None
if post_reshape_pattern is not None:
self.post_rearrange = Rearrange(post_reshape_pattern, **cast(dict, post_reshape_lengths))
def __call__(self, input):
if self.pre_rearrange is not None:
input = self.pre_rearrange(input)
result = chainer.functions.einsum(self.einsum_pattern, input, self.weight)
if self.bias is not None:
result = result + self.bias
if self.post_rearrange is not None:
result = self.post_rearrange(result)
return result