2307 lines
100 KiB
Python
2307 lines
100 KiB
Python
|
"""Convert python types to pydantic-core schema."""
|
||
|
from __future__ import annotations as _annotations
|
||
|
|
||
|
import collections.abc
|
||
|
import dataclasses
|
||
|
import inspect
|
||
|
import re
|
||
|
import sys
|
||
|
import typing
|
||
|
import warnings
|
||
|
from contextlib import ExitStack, contextmanager
|
||
|
from copy import copy, deepcopy
|
||
|
from enum import Enum
|
||
|
from functools import partial
|
||
|
from inspect import Parameter, _ParameterKind, signature
|
||
|
from itertools import chain
|
||
|
from operator import attrgetter
|
||
|
from types import FunctionType, LambdaType, MethodType
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Any,
|
||
|
Callable,
|
||
|
Dict,
|
||
|
Final,
|
||
|
ForwardRef,
|
||
|
Iterable,
|
||
|
Iterator,
|
||
|
Mapping,
|
||
|
Type,
|
||
|
TypeVar,
|
||
|
Union,
|
||
|
cast,
|
||
|
overload,
|
||
|
)
|
||
|
from warnings import warn
|
||
|
|
||
|
from pydantic_core import CoreSchema, PydanticUndefined, core_schema, to_jsonable_python
|
||
|
from typing_extensions import Annotated, Literal, TypeAliasType, TypedDict, get_args, get_origin, is_typeddict
|
||
|
|
||
|
from ..aliases import AliasGenerator
|
||
|
from ..annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler
|
||
|
from ..config import ConfigDict, JsonDict, JsonEncoder
|
||
|
from ..errors import PydanticSchemaGenerationError, PydanticUndefinedAnnotation, PydanticUserError
|
||
|
from ..json_schema import JsonSchemaValue
|
||
|
from ..version import version_short
|
||
|
from ..warnings import PydanticDeprecatedSince20
|
||
|
from . import _core_utils, _decorators, _discriminated_union, _known_annotated_metadata, _typing_extra
|
||
|
from ._config import ConfigWrapper, ConfigWrapperStack
|
||
|
from ._core_metadata import CoreMetadataHandler, build_metadata_dict
|
||
|
from ._core_utils import (
|
||
|
CoreSchemaOrField,
|
||
|
collect_invalid_schemas,
|
||
|
define_expected_missing_refs,
|
||
|
get_ref,
|
||
|
get_type_ref,
|
||
|
is_function_with_inner_schema,
|
||
|
is_list_like_schema_with_items_schema,
|
||
|
simplify_schema_references,
|
||
|
validate_core_schema,
|
||
|
)
|
||
|
from ._decorators import (
|
||
|
Decorator,
|
||
|
DecoratorInfos,
|
||
|
FieldSerializerDecoratorInfo,
|
||
|
FieldValidatorDecoratorInfo,
|
||
|
ModelSerializerDecoratorInfo,
|
||
|
ModelValidatorDecoratorInfo,
|
||
|
RootValidatorDecoratorInfo,
|
||
|
ValidatorDecoratorInfo,
|
||
|
get_attribute_from_bases,
|
||
|
inspect_field_serializer,
|
||
|
inspect_model_serializer,
|
||
|
inspect_validator,
|
||
|
)
|
||
|
from ._docs_extraction import extract_docstrings_from_cls
|
||
|
from ._fields import collect_dataclass_fields, get_type_hints_infer_globalns
|
||
|
from ._forward_ref import PydanticRecursiveRef
|
||
|
from ._generics import get_standard_typevars_map, has_instance_in_type, recursively_defined_type_refs, replace_types
|
||
|
from ._schema_generation_shared import CallbackGetCoreSchemaHandler
|
||
|
from ._typing_extra import is_finalvar, is_self_type
|
||
|
from ._utils import lenient_issubclass
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ..fields import ComputedFieldInfo, FieldInfo
|
||
|
from ..main import BaseModel
|
||
|
from ..types import Discriminator
|
||
|
from ..validators import FieldValidatorModes
|
||
|
from ._dataclasses import StandardDataclass
|
||
|
from ._schema_generation_shared import GetJsonSchemaFunction
|
||
|
|
||
|
_SUPPORTS_TYPEDDICT = sys.version_info >= (3, 12)
|
||
|
_AnnotatedType = type(Annotated[int, 123])
|
||
|
|
||
|
FieldDecoratorInfo = Union[ValidatorDecoratorInfo, FieldValidatorDecoratorInfo, FieldSerializerDecoratorInfo]
|
||
|
FieldDecoratorInfoType = TypeVar('FieldDecoratorInfoType', bound=FieldDecoratorInfo)
|
||
|
AnyFieldDecorator = Union[
|
||
|
Decorator[ValidatorDecoratorInfo],
|
||
|
Decorator[FieldValidatorDecoratorInfo],
|
||
|
Decorator[FieldSerializerDecoratorInfo],
|
||
|
]
|
||
|
|
||
|
ModifyCoreSchemaWrapHandler = GetCoreSchemaHandler
|
||
|
GetCoreSchemaFunction = Callable[[Any, ModifyCoreSchemaWrapHandler], core_schema.CoreSchema]
|
||
|
|
||
|
|
||
|
TUPLE_TYPES: list[type] = [tuple, typing.Tuple]
|
||
|
LIST_TYPES: list[type] = [list, typing.List, collections.abc.MutableSequence]
|
||
|
SET_TYPES: list[type] = [set, typing.Set, collections.abc.MutableSet]
|
||
|
FROZEN_SET_TYPES: list[type] = [frozenset, typing.FrozenSet, collections.abc.Set]
|
||
|
DICT_TYPES: list[type] = [dict, typing.Dict, collections.abc.MutableMapping, collections.abc.Mapping]
|
||
|
|
||
|
|
||
|
def check_validator_fields_against_field_name(
|
||
|
info: FieldDecoratorInfo,
|
||
|
field: str,
|
||
|
) -> bool:
|
||
|
"""Check if field name is in validator fields.
|
||
|
|
||
|
Args:
|
||
|
info: The field info.
|
||
|
field: The field name to check.
|
||
|
|
||
|
Returns:
|
||
|
`True` if field name is in validator fields, `False` otherwise.
|
||
|
"""
|
||
|
if '*' in info.fields:
|
||
|
return True
|
||
|
for v_field_name in info.fields:
|
||
|
if v_field_name == field:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def check_decorator_fields_exist(decorators: Iterable[AnyFieldDecorator], fields: Iterable[str]) -> None:
|
||
|
"""Check if the defined fields in decorators exist in `fields` param.
|
||
|
|
||
|
It ignores the check for a decorator if the decorator has `*` as field or `check_fields=False`.
|
||
|
|
||
|
Args:
|
||
|
decorators: An iterable of decorators.
|
||
|
fields: An iterable of fields name.
|
||
|
|
||
|
Raises:
|
||
|
PydanticUserError: If one of the field names does not exist in `fields` param.
|
||
|
"""
|
||
|
fields = set(fields)
|
||
|
for dec in decorators:
|
||
|
if '*' in dec.info.fields:
|
||
|
continue
|
||
|
if dec.info.check_fields is False:
|
||
|
continue
|
||
|
for field in dec.info.fields:
|
||
|
if field not in fields:
|
||
|
raise PydanticUserError(
|
||
|
f'Decorators defined with incorrect fields: {dec.cls_ref}.{dec.cls_var_name}'
|
||
|
" (use check_fields=False if you're inheriting from the model and intended this)",
|
||
|
code='decorator-missing-field',
|
||
|
)
|
||
|
|
||
|
|
||
|
def filter_field_decorator_info_by_field(
|
||
|
validator_functions: Iterable[Decorator[FieldDecoratorInfoType]], field: str
|
||
|
) -> list[Decorator[FieldDecoratorInfoType]]:
|
||
|
return [dec for dec in validator_functions if check_validator_fields_against_field_name(dec.info, field)]
|
||
|
|
||
|
|
||
|
def apply_each_item_validators(
|
||
|
schema: core_schema.CoreSchema,
|
||
|
each_item_validators: list[Decorator[ValidatorDecoratorInfo]],
|
||
|
field_name: str | None,
|
||
|
) -> core_schema.CoreSchema:
|
||
|
# This V1 compatibility shim should eventually be removed
|
||
|
|
||
|
# push down any `each_item=True` validators
|
||
|
# note that this won't work for any Annotated types that get wrapped by a function validator
|
||
|
# but that's okay because that didn't exist in V1
|
||
|
if schema['type'] == 'nullable':
|
||
|
schema['schema'] = apply_each_item_validators(schema['schema'], each_item_validators, field_name)
|
||
|
return schema
|
||
|
elif schema['type'] == 'tuple':
|
||
|
if (variadic_item_index := schema.get('variadic_item_index')) is not None:
|
||
|
schema['items_schema'][variadic_item_index] = apply_validators(
|
||
|
schema['items_schema'][variadic_item_index], each_item_validators, field_name
|
||
|
)
|
||
|
elif is_list_like_schema_with_items_schema(schema):
|
||
|
inner_schema = schema.get('items_schema', None)
|
||
|
if inner_schema is None:
|
||
|
inner_schema = core_schema.any_schema()
|
||
|
schema['items_schema'] = apply_validators(inner_schema, each_item_validators, field_name)
|
||
|
elif schema['type'] == 'dict':
|
||
|
# push down any `each_item=True` validators onto dict _values_
|
||
|
# this is super arbitrary but it's the V1 behavior
|
||
|
inner_schema = schema.get('values_schema', None)
|
||
|
if inner_schema is None:
|
||
|
inner_schema = core_schema.any_schema()
|
||
|
schema['values_schema'] = apply_validators(inner_schema, each_item_validators, field_name)
|
||
|
elif each_item_validators:
|
||
|
raise TypeError(
|
||
|
f"`@validator(..., each_item=True)` cannot be applied to fields with a schema of {schema['type']}"
|
||
|
)
|
||
|
return schema
|
||
|
|
||
|
|
||
|
def modify_model_json_schema(
|
||
|
schema_or_field: CoreSchemaOrField, handler: GetJsonSchemaHandler, *, cls: Any
|
||
|
) -> JsonSchemaValue:
|
||
|
"""Add title and description for model-like classes' JSON schema.
|
||
|
|
||
|
Args:
|
||
|
schema_or_field: The schema data to generate a JSON schema from.
|
||
|
handler: The `GetCoreSchemaHandler` instance.
|
||
|
cls: The model-like class.
|
||
|
|
||
|
Returns:
|
||
|
JsonSchemaValue: The updated JSON schema.
|
||
|
"""
|
||
|
from ..main import BaseModel
|
||
|
from ..root_model import RootModel
|
||
|
|
||
|
json_schema = handler(schema_or_field)
|
||
|
original_schema = handler.resolve_ref_schema(json_schema)
|
||
|
# Preserve the fact that definitions schemas should never have sibling keys:
|
||
|
if '$ref' in original_schema:
|
||
|
ref = original_schema['$ref']
|
||
|
original_schema.clear()
|
||
|
original_schema['allOf'] = [{'$ref': ref}]
|
||
|
if 'title' not in original_schema:
|
||
|
original_schema['title'] = cls.__name__
|
||
|
# BaseModel; don't use cls.__doc__ as it will contain the verbose class signature by default
|
||
|
docstring = None if cls is BaseModel else cls.__doc__
|
||
|
if docstring and 'description' not in original_schema:
|
||
|
original_schema['description'] = inspect.cleandoc(docstring)
|
||
|
elif issubclass(cls, RootModel) and cls.model_fields['root'].description:
|
||
|
original_schema['description'] = cls.model_fields['root'].description
|
||
|
return json_schema
|
||
|
|
||
|
|
||
|
JsonEncoders = Dict[Type[Any], JsonEncoder]
|
||
|
|
||
|
|
||
|
def _add_custom_serialization_from_json_encoders(
|
||
|
json_encoders: JsonEncoders | None, tp: Any, schema: CoreSchema
|
||
|
) -> CoreSchema:
|
||
|
"""Iterate over the json_encoders and add the first matching encoder to the schema.
|
||
|
|
||
|
Args:
|
||
|
json_encoders: A dictionary of types and their encoder functions.
|
||
|
tp: The type to check for a matching encoder.
|
||
|
schema: The schema to add the encoder to.
|
||
|
"""
|
||
|
if not json_encoders:
|
||
|
return schema
|
||
|
if 'serialization' in schema:
|
||
|
return schema
|
||
|
# Check the class type and its superclasses for a matching encoder
|
||
|
# Decimal.__class__.__mro__ (and probably other cases) doesn't include Decimal itself
|
||
|
# if the type is a GenericAlias (e.g. from list[int]) we need to use __class__ instead of .__mro__
|
||
|
for base in (tp, *getattr(tp, '__mro__', tp.__class__.__mro__)[:-1]):
|
||
|
encoder = json_encoders.get(base)
|
||
|
if encoder is None:
|
||
|
continue
|
||
|
|
||
|
warnings.warn(
|
||
|
f'`json_encoders` is deprecated. See https://docs.pydantic.dev/{version_short()}/concepts/serialization/#custom-serializers for alternatives',
|
||
|
PydanticDeprecatedSince20,
|
||
|
)
|
||
|
|
||
|
# TODO: in theory we should check that the schema accepts a serialization key
|
||
|
schema['serialization'] = core_schema.plain_serializer_function_ser_schema(encoder, when_used='json')
|
||
|
return schema
|
||
|
|
||
|
return schema
|
||
|
|
||
|
|
||
|
TypesNamespace = Union[Dict[str, Any], None]
|
||
|
|
||
|
|
||
|
class TypesNamespaceStack:
|
||
|
"""A stack of types namespaces."""
|
||
|
|
||
|
def __init__(self, types_namespace: TypesNamespace):
|
||
|
self._types_namespace_stack: list[TypesNamespace] = [types_namespace]
|
||
|
|
||
|
@property
|
||
|
def tail(self) -> TypesNamespace:
|
||
|
return self._types_namespace_stack[-1]
|
||
|
|
||
|
@contextmanager
|
||
|
def push(self, for_type: type[Any]):
|
||
|
types_namespace = {**_typing_extra.get_cls_types_namespace(for_type), **(self.tail or {})}
|
||
|
self._types_namespace_stack.append(types_namespace)
|
||
|
try:
|
||
|
yield
|
||
|
finally:
|
||
|
self._types_namespace_stack.pop()
|
||
|
|
||
|
|
||
|
def _get_first_non_null(a: Any, b: Any) -> Any:
|
||
|
"""Return the first argument if it is not None, otherwise return the second argument.
|
||
|
|
||
|
Use case: serialization_alias (argument a) and alias (argument b) are both defined, and serialization_alias is ''.
|
||
|
This function will return serialization_alias, which is the first argument, even though it is an empty string.
|
||
|
"""
|
||
|
return a if a is not None else b
|
||
|
|
||
|
|
||
|
class GenerateSchema:
|
||
|
"""Generate core schema for a Pydantic model, dataclass and types like `str`, `datetime`, ... ."""
|
||
|
|
||
|
__slots__ = (
|
||
|
'_config_wrapper_stack',
|
||
|
'_types_namespace_stack',
|
||
|
'_typevars_map',
|
||
|
'field_name_stack',
|
||
|
'model_type_stack',
|
||
|
'defs',
|
||
|
)
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config_wrapper: ConfigWrapper,
|
||
|
types_namespace: dict[str, Any] | None,
|
||
|
typevars_map: dict[Any, Any] | None = None,
|
||
|
) -> None:
|
||
|
# we need a stack for recursing into child models
|
||
|
self._config_wrapper_stack = ConfigWrapperStack(config_wrapper)
|
||
|
self._types_namespace_stack = TypesNamespaceStack(types_namespace)
|
||
|
self._typevars_map = typevars_map
|
||
|
self.field_name_stack = _FieldNameStack()
|
||
|
self.model_type_stack = _ModelTypeStack()
|
||
|
self.defs = _Definitions()
|
||
|
|
||
|
@classmethod
|
||
|
def __from_parent(
|
||
|
cls,
|
||
|
config_wrapper_stack: ConfigWrapperStack,
|
||
|
types_namespace_stack: TypesNamespaceStack,
|
||
|
model_type_stack: _ModelTypeStack,
|
||
|
typevars_map: dict[Any, Any] | None,
|
||
|
defs: _Definitions,
|
||
|
) -> GenerateSchema:
|
||
|
obj = cls.__new__(cls)
|
||
|
obj._config_wrapper_stack = config_wrapper_stack
|
||
|
obj._types_namespace_stack = types_namespace_stack
|
||
|
obj.model_type_stack = model_type_stack
|
||
|
obj._typevars_map = typevars_map
|
||
|
obj.field_name_stack = _FieldNameStack()
|
||
|
obj.defs = defs
|
||
|
return obj
|
||
|
|
||
|
@property
|
||
|
def _config_wrapper(self) -> ConfigWrapper:
|
||
|
return self._config_wrapper_stack.tail
|
||
|
|
||
|
@property
|
||
|
def _types_namespace(self) -> dict[str, Any] | None:
|
||
|
return self._types_namespace_stack.tail
|
||
|
|
||
|
@property
|
||
|
def _current_generate_schema(self) -> GenerateSchema:
|
||
|
cls = self._config_wrapper.schema_generator or GenerateSchema
|
||
|
return cls.__from_parent(
|
||
|
self._config_wrapper_stack,
|
||
|
self._types_namespace_stack,
|
||
|
self.model_type_stack,
|
||
|
self._typevars_map,
|
||
|
self.defs,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def _arbitrary_types(self) -> bool:
|
||
|
return self._config_wrapper.arbitrary_types_allowed
|
||
|
|
||
|
def str_schema(self) -> CoreSchema:
|
||
|
"""Generate a CoreSchema for `str`"""
|
||
|
return core_schema.str_schema()
|
||
|
|
||
|
# the following methods can be overridden but should be considered
|
||
|
# unstable / private APIs
|
||
|
def _list_schema(self, tp: Any, items_type: Any) -> CoreSchema:
|
||
|
return core_schema.list_schema(self.generate_schema(items_type))
|
||
|
|
||
|
def _dict_schema(self, tp: Any, keys_type: Any, values_type: Any) -> CoreSchema:
|
||
|
return core_schema.dict_schema(self.generate_schema(keys_type), self.generate_schema(values_type))
|
||
|
|
||
|
def _set_schema(self, tp: Any, items_type: Any) -> CoreSchema:
|
||
|
return core_schema.set_schema(self.generate_schema(items_type))
|
||
|
|
||
|
def _frozenset_schema(self, tp: Any, items_type: Any) -> CoreSchema:
|
||
|
return core_schema.frozenset_schema(self.generate_schema(items_type))
|
||
|
|
||
|
def _arbitrary_type_schema(self, tp: Any) -> CoreSchema:
|
||
|
if not isinstance(tp, type):
|
||
|
warn(
|
||
|
f'{tp!r} is not a Python type (it may be an instance of an object),'
|
||
|
' Pydantic will allow any object with no validation since we cannot even'
|
||
|
' enforce that the input is an instance of the given type.'
|
||
|
' To get rid of this error wrap the type with `pydantic.SkipValidation`.',
|
||
|
UserWarning,
|
||
|
)
|
||
|
return core_schema.any_schema()
|
||
|
return core_schema.is_instance_schema(tp)
|
||
|
|
||
|
def _unknown_type_schema(self, obj: Any) -> CoreSchema:
|
||
|
raise PydanticSchemaGenerationError(
|
||
|
f'Unable to generate pydantic-core schema for {obj!r}. '
|
||
|
'Set `arbitrary_types_allowed=True` in the model_config to ignore this error'
|
||
|
' or implement `__get_pydantic_core_schema__` on your type to fully support it.'
|
||
|
'\n\nIf you got this error by calling handler(<some type>) within'
|
||
|
' `__get_pydantic_core_schema__` then you likely need to call'
|
||
|
' `handler.generate_schema(<some type>)` since we do not call'
|
||
|
' `__get_pydantic_core_schema__` on `<some type>` otherwise to avoid infinite recursion.'
|
||
|
)
|
||
|
|
||
|
def _apply_discriminator_to_union(
|
||
|
self, schema: CoreSchema, discriminator: str | Discriminator | None
|
||
|
) -> CoreSchema:
|
||
|
if discriminator is None:
|
||
|
return schema
|
||
|
try:
|
||
|
return _discriminated_union.apply_discriminator(
|
||
|
schema,
|
||
|
discriminator,
|
||
|
)
|
||
|
except _discriminated_union.MissingDefinitionForUnionRef:
|
||
|
# defer until defs are resolved
|
||
|
_discriminated_union.set_discriminator_in_metadata(
|
||
|
schema,
|
||
|
discriminator,
|
||
|
)
|
||
|
return schema
|
||
|
|
||
|
class CollectedInvalid(Exception):
|
||
|
pass
|
||
|
|
||
|
def clean_schema(self, schema: CoreSchema) -> CoreSchema:
|
||
|
schema = self.collect_definitions(schema)
|
||
|
schema = simplify_schema_references(schema)
|
||
|
if collect_invalid_schemas(schema):
|
||
|
raise self.CollectedInvalid()
|
||
|
schema = _discriminated_union.apply_discriminators(schema)
|
||
|
schema = validate_core_schema(schema)
|
||
|
return schema
|
||
|
|
||
|
def collect_definitions(self, schema: CoreSchema) -> CoreSchema:
|
||
|
ref = cast('str | None', schema.get('ref', None))
|
||
|
if ref:
|
||
|
self.defs.definitions[ref] = schema
|
||
|
if 'ref' in schema:
|
||
|
schema = core_schema.definition_reference_schema(schema['ref'])
|
||
|
return core_schema.definitions_schema(
|
||
|
schema,
|
||
|
list(self.defs.definitions.values()),
|
||
|
)
|
||
|
|
||
|
def _add_js_function(self, metadata_schema: CoreSchema, js_function: Callable[..., Any]) -> None:
|
||
|
metadata = CoreMetadataHandler(metadata_schema).metadata
|
||
|
pydantic_js_functions = metadata.setdefault('pydantic_js_functions', [])
|
||
|
# because of how we generate core schemas for nested generic models
|
||
|
# we can end up adding `BaseModel.__get_pydantic_json_schema__` multiple times
|
||
|
# this check may fail to catch duplicates if the function is a `functools.partial`
|
||
|
# or something like that
|
||
|
# but if it does it'll fail by inserting the duplicate
|
||
|
if js_function not in pydantic_js_functions:
|
||
|
pydantic_js_functions.append(js_function)
|
||
|
|
||
|
def generate_schema(
|
||
|
self,
|
||
|
obj: Any,
|
||
|
from_dunder_get_core_schema: bool = True,
|
||
|
) -> core_schema.CoreSchema:
|
||
|
"""Generate core schema.
|
||
|
|
||
|
Args:
|
||
|
obj: The object to generate core schema for.
|
||
|
from_dunder_get_core_schema: Whether to generate schema from either the
|
||
|
`__get_pydantic_core_schema__` function or `__pydantic_core_schema__` property.
|
||
|
|
||
|
Returns:
|
||
|
The generated core schema.
|
||
|
|
||
|
Raises:
|
||
|
PydanticUndefinedAnnotation:
|
||
|
If it is not possible to evaluate forward reference.
|
||
|
PydanticSchemaGenerationError:
|
||
|
If it is not possible to generate pydantic-core schema.
|
||
|
TypeError:
|
||
|
- If `alias_generator` returns a disallowed type (must be str, AliasPath or AliasChoices).
|
||
|
- If V1 style validator with `each_item=True` applied on a wrong field.
|
||
|
PydanticUserError:
|
||
|
- If `typing.TypedDict` is used instead of `typing_extensions.TypedDict` on Python < 3.12.
|
||
|
- If `__modify_schema__` method is used instead of `__get_pydantic_json_schema__`.
|
||
|
"""
|
||
|
schema: CoreSchema | None = None
|
||
|
|
||
|
if from_dunder_get_core_schema:
|
||
|
from_property = self._generate_schema_from_property(obj, obj)
|
||
|
if from_property is not None:
|
||
|
schema = from_property
|
||
|
|
||
|
if schema is None:
|
||
|
schema = self._generate_schema_inner(obj)
|
||
|
|
||
|
metadata_js_function = _extract_get_pydantic_json_schema(obj, schema)
|
||
|
if metadata_js_function is not None:
|
||
|
metadata_schema = resolve_original_schema(schema, self.defs.definitions)
|
||
|
if metadata_schema:
|
||
|
self._add_js_function(metadata_schema, metadata_js_function)
|
||
|
|
||
|
schema = _add_custom_serialization_from_json_encoders(self._config_wrapper.json_encoders, obj, schema)
|
||
|
|
||
|
return schema
|
||
|
|
||
|
def _model_schema(self, cls: type[BaseModel]) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for a Pydantic model."""
|
||
|
with self.defs.get_schema_or_ref(cls) as (model_ref, maybe_schema):
|
||
|
if maybe_schema is not None:
|
||
|
return maybe_schema
|
||
|
|
||
|
fields = cls.model_fields
|
||
|
decorators = cls.__pydantic_decorators__
|
||
|
computed_fields = decorators.computed_fields
|
||
|
check_decorator_fields_exist(
|
||
|
chain(
|
||
|
decorators.field_validators.values(),
|
||
|
decorators.field_serializers.values(),
|
||
|
decorators.validators.values(),
|
||
|
),
|
||
|
{*fields.keys(), *computed_fields.keys()},
|
||
|
)
|
||
|
config_wrapper = ConfigWrapper(cls.model_config, check=False)
|
||
|
core_config = config_wrapper.core_config(cls)
|
||
|
metadata = build_metadata_dict(js_functions=[partial(modify_model_json_schema, cls=cls)])
|
||
|
|
||
|
model_validators = decorators.model_validators.values()
|
||
|
|
||
|
extras_schema = None
|
||
|
if core_config.get('extra_fields_behavior') == 'allow':
|
||
|
assert cls.__mro__[0] is cls
|
||
|
assert cls.__mro__[-1] is object
|
||
|
for candidate_cls in cls.__mro__[:-1]:
|
||
|
extras_annotation = getattr(candidate_cls, '__annotations__', {}).get('__pydantic_extra__', None)
|
||
|
if extras_annotation is not None:
|
||
|
if isinstance(extras_annotation, str):
|
||
|
extras_annotation = _typing_extra.eval_type_backport(
|
||
|
_typing_extra._make_forward_ref(extras_annotation, is_argument=False, is_class=True),
|
||
|
self._types_namespace,
|
||
|
)
|
||
|
tp = get_origin(extras_annotation)
|
||
|
if tp not in (Dict, dict):
|
||
|
raise PydanticSchemaGenerationError(
|
||
|
'The type annotation for `__pydantic_extra__` must be `Dict[str, ...]`'
|
||
|
)
|
||
|
extra_items_type = self._get_args_resolving_forward_refs(
|
||
|
extras_annotation,
|
||
|
required=True,
|
||
|
)[1]
|
||
|
if extra_items_type is not Any:
|
||
|
extras_schema = self.generate_schema(extra_items_type)
|
||
|
break
|
||
|
|
||
|
with self._config_wrapper_stack.push(config_wrapper), self._types_namespace_stack.push(cls):
|
||
|
self = self._current_generate_schema
|
||
|
if cls.__pydantic_root_model__:
|
||
|
root_field = self._common_field_schema('root', fields['root'], decorators)
|
||
|
inner_schema = root_field['schema']
|
||
|
inner_schema = apply_model_validators(inner_schema, model_validators, 'inner')
|
||
|
model_schema = core_schema.model_schema(
|
||
|
cls,
|
||
|
inner_schema,
|
||
|
custom_init=getattr(cls, '__pydantic_custom_init__', None),
|
||
|
root_model=True,
|
||
|
post_init=getattr(cls, '__pydantic_post_init__', None),
|
||
|
config=core_config,
|
||
|
ref=model_ref,
|
||
|
metadata=metadata,
|
||
|
)
|
||
|
else:
|
||
|
fields_schema: core_schema.CoreSchema = core_schema.model_fields_schema(
|
||
|
{k: self._generate_md_field_schema(k, v, decorators) for k, v in fields.items()},
|
||
|
computed_fields=[
|
||
|
self._computed_field_schema(d, decorators.field_serializers)
|
||
|
for d in computed_fields.values()
|
||
|
],
|
||
|
extras_schema=extras_schema,
|
||
|
model_name=cls.__name__,
|
||
|
)
|
||
|
inner_schema = apply_validators(fields_schema, decorators.root_validators.values(), None)
|
||
|
new_inner_schema = define_expected_missing_refs(inner_schema, recursively_defined_type_refs())
|
||
|
if new_inner_schema is not None:
|
||
|
inner_schema = new_inner_schema
|
||
|
inner_schema = apply_model_validators(inner_schema, model_validators, 'inner')
|
||
|
|
||
|
model_schema = core_schema.model_schema(
|
||
|
cls,
|
||
|
inner_schema,
|
||
|
custom_init=getattr(cls, '__pydantic_custom_init__', None),
|
||
|
root_model=False,
|
||
|
post_init=getattr(cls, '__pydantic_post_init__', None),
|
||
|
config=core_config,
|
||
|
ref=model_ref,
|
||
|
metadata=metadata,
|
||
|
)
|
||
|
|
||
|
schema = self._apply_model_serializers(model_schema, decorators.model_serializers.values())
|
||
|
schema = apply_model_validators(schema, model_validators, 'outer')
|
||
|
self.defs.definitions[model_ref] = schema
|
||
|
return core_schema.definition_reference_schema(model_ref)
|
||
|
|
||
|
def _unpack_refs_defs(self, schema: CoreSchema) -> CoreSchema:
|
||
|
"""Unpack all 'definitions' schemas into `GenerateSchema.defs.definitions`
|
||
|
and return the inner schema.
|
||
|
"""
|
||
|
|
||
|
def get_ref(s: CoreSchema) -> str:
|
||
|
return s['ref'] # type: ignore
|
||
|
|
||
|
if schema['type'] == 'definitions':
|
||
|
self.defs.definitions.update({get_ref(s): s for s in schema['definitions']})
|
||
|
schema = schema['schema']
|
||
|
return schema
|
||
|
|
||
|
def _generate_schema_from_property(self, obj: Any, source: Any) -> core_schema.CoreSchema | None:
|
||
|
"""Try to generate schema from either the `__get_pydantic_core_schema__` function or
|
||
|
`__pydantic_core_schema__` property.
|
||
|
|
||
|
Note: `__get_pydantic_core_schema__` takes priority so it can
|
||
|
decide whether to use a `__pydantic_core_schema__` attribute, or generate a fresh schema.
|
||
|
"""
|
||
|
# avoid calling `__get_pydantic_core_schema__` if we've already visited this object
|
||
|
if is_self_type(obj):
|
||
|
obj = self.model_type_stack.get()
|
||
|
with self.defs.get_schema_or_ref(obj) as (_, maybe_schema):
|
||
|
if maybe_schema is not None:
|
||
|
return maybe_schema
|
||
|
if obj is source:
|
||
|
ref_mode = 'unpack'
|
||
|
else:
|
||
|
ref_mode = 'to-def'
|
||
|
|
||
|
schema: CoreSchema
|
||
|
|
||
|
if (get_schema := getattr(obj, '__get_pydantic_core_schema__', None)) is not None:
|
||
|
if len(inspect.signature(get_schema).parameters) == 1:
|
||
|
# (source) -> CoreSchema
|
||
|
schema = get_schema(source)
|
||
|
else:
|
||
|
schema = get_schema(
|
||
|
source, CallbackGetCoreSchemaHandler(self._generate_schema_inner, self, ref_mode=ref_mode)
|
||
|
)
|
||
|
# fmt: off
|
||
|
elif (existing_schema := getattr(obj, '__pydantic_core_schema__', None)) is not None and existing_schema.get(
|
||
|
'cls', None
|
||
|
) == obj:
|
||
|
schema = existing_schema
|
||
|
# fmt: on
|
||
|
elif (validators := getattr(obj, '__get_validators__', None)) is not None:
|
||
|
warn(
|
||
|
'`__get_validators__` is deprecated and will be removed, use `__get_pydantic_core_schema__` instead.',
|
||
|
PydanticDeprecatedSince20,
|
||
|
)
|
||
|
schema = core_schema.chain_schema([core_schema.with_info_plain_validator_function(v) for v in validators()])
|
||
|
else:
|
||
|
# we have no existing schema information on the property, exit early so that we can go generate a schema
|
||
|
return None
|
||
|
|
||
|
schema = self._unpack_refs_defs(schema)
|
||
|
|
||
|
if is_function_with_inner_schema(schema):
|
||
|
ref = schema['schema'].pop('ref', None) # pyright: ignore[reportGeneralTypeIssues]
|
||
|
if ref:
|
||
|
schema['ref'] = ref
|
||
|
else:
|
||
|
ref = get_ref(schema)
|
||
|
|
||
|
if ref:
|
||
|
self.defs.definitions[ref] = schema
|
||
|
return core_schema.definition_reference_schema(ref)
|
||
|
|
||
|
return schema
|
||
|
|
||
|
def _resolve_forward_ref(self, obj: Any) -> Any:
|
||
|
# we assume that types_namespace has the target of forward references in its scope,
|
||
|
# but this could fail, for example, if calling Validator on an imported type which contains
|
||
|
# forward references to other types only defined in the module from which it was imported
|
||
|
# `Validator(SomeImportedTypeAliasWithAForwardReference)`
|
||
|
# or the equivalent for BaseModel
|
||
|
# class Model(BaseModel):
|
||
|
# x: SomeImportedTypeAliasWithAForwardReference
|
||
|
try:
|
||
|
obj = _typing_extra.eval_type_backport(obj, globalns=self._types_namespace)
|
||
|
except NameError as e:
|
||
|
raise PydanticUndefinedAnnotation.from_name_error(e) from e
|
||
|
|
||
|
# if obj is still a ForwardRef, it means we can't evaluate it, raise PydanticUndefinedAnnotation
|
||
|
if isinstance(obj, ForwardRef):
|
||
|
raise PydanticUndefinedAnnotation(obj.__forward_arg__, f'Unable to evaluate forward reference {obj}')
|
||
|
|
||
|
if self._typevars_map:
|
||
|
obj = replace_types(obj, self._typevars_map)
|
||
|
|
||
|
return obj
|
||
|
|
||
|
@overload
|
||
|
def _get_args_resolving_forward_refs(self, obj: Any, required: Literal[True]) -> tuple[Any, ...]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def _get_args_resolving_forward_refs(self, obj: Any) -> tuple[Any, ...] | None:
|
||
|
...
|
||
|
|
||
|
def _get_args_resolving_forward_refs(self, obj: Any, required: bool = False) -> tuple[Any, ...] | None:
|
||
|
args = get_args(obj)
|
||
|
if args:
|
||
|
args = tuple([self._resolve_forward_ref(a) if isinstance(a, ForwardRef) else a for a in args])
|
||
|
elif required: # pragma: no cover
|
||
|
raise TypeError(f'Expected {obj} to have generic parameters but it had none')
|
||
|
return args
|
||
|
|
||
|
def _get_first_arg_or_any(self, obj: Any) -> Any:
|
||
|
args = self._get_args_resolving_forward_refs(obj)
|
||
|
if not args:
|
||
|
return Any
|
||
|
return args[0]
|
||
|
|
||
|
def _get_first_two_args_or_any(self, obj: Any) -> tuple[Any, Any]:
|
||
|
args = self._get_args_resolving_forward_refs(obj)
|
||
|
if not args:
|
||
|
return (Any, Any)
|
||
|
if len(args) < 2:
|
||
|
origin = get_origin(obj)
|
||
|
raise TypeError(f'Expected two type arguments for {origin}, got 1')
|
||
|
return args[0], args[1]
|
||
|
|
||
|
def _generate_schema_inner(self, obj: Any) -> core_schema.CoreSchema:
|
||
|
if isinstance(obj, _AnnotatedType):
|
||
|
return self._annotated_schema(obj)
|
||
|
|
||
|
if isinstance(obj, dict):
|
||
|
# we assume this is already a valid schema
|
||
|
return obj # type: ignore[return-value]
|
||
|
|
||
|
if isinstance(obj, str):
|
||
|
obj = ForwardRef(obj)
|
||
|
|
||
|
if isinstance(obj, ForwardRef):
|
||
|
return self.generate_schema(self._resolve_forward_ref(obj))
|
||
|
|
||
|
from ..main import BaseModel
|
||
|
|
||
|
if lenient_issubclass(obj, BaseModel):
|
||
|
with self.model_type_stack.push(obj):
|
||
|
return self._model_schema(obj)
|
||
|
|
||
|
if isinstance(obj, PydanticRecursiveRef):
|
||
|
return core_schema.definition_reference_schema(schema_ref=obj.type_ref)
|
||
|
|
||
|
return self.match_type(obj)
|
||
|
|
||
|
def match_type(self, obj: Any) -> core_schema.CoreSchema: # noqa: C901
|
||
|
"""Main mapping of types to schemas.
|
||
|
|
||
|
The general structure is a series of if statements starting with the simple cases
|
||
|
(non-generic primitive types) and then handling generics and other more complex cases.
|
||
|
|
||
|
Each case either generates a schema directly, calls into a public user-overridable method
|
||
|
(like `GenerateSchema.tuple_variable_schema`) or calls into a private method that handles some
|
||
|
boilerplate before calling into the user-facing method (e.g. `GenerateSchema._tuple_schema`).
|
||
|
|
||
|
The idea is that we'll evolve this into adding more and more user facing methods over time
|
||
|
as they get requested and we figure out what the right API for them is.
|
||
|
"""
|
||
|
if obj is str:
|
||
|
return self.str_schema()
|
||
|
elif obj is bytes:
|
||
|
return core_schema.bytes_schema()
|
||
|
elif obj is int:
|
||
|
return core_schema.int_schema()
|
||
|
elif obj is float:
|
||
|
return core_schema.float_schema()
|
||
|
elif obj is bool:
|
||
|
return core_schema.bool_schema()
|
||
|
elif obj is Any or obj is object:
|
||
|
return core_schema.any_schema()
|
||
|
elif obj is None or obj is _typing_extra.NoneType:
|
||
|
return core_schema.none_schema()
|
||
|
elif obj in TUPLE_TYPES:
|
||
|
return self._tuple_schema(obj)
|
||
|
elif obj in LIST_TYPES:
|
||
|
return self._list_schema(obj, self._get_first_arg_or_any(obj))
|
||
|
elif obj in SET_TYPES:
|
||
|
return self._set_schema(obj, self._get_first_arg_or_any(obj))
|
||
|
elif obj in FROZEN_SET_TYPES:
|
||
|
return self._frozenset_schema(obj, self._get_first_arg_or_any(obj))
|
||
|
elif obj in DICT_TYPES:
|
||
|
return self._dict_schema(obj, *self._get_first_two_args_or_any(obj))
|
||
|
elif isinstance(obj, TypeAliasType):
|
||
|
return self._type_alias_type_schema(obj)
|
||
|
elif obj == type:
|
||
|
return self._type_schema()
|
||
|
elif _typing_extra.is_callable_type(obj):
|
||
|
return core_schema.callable_schema()
|
||
|
elif _typing_extra.is_literal_type(obj):
|
||
|
return self._literal_schema(obj)
|
||
|
elif is_typeddict(obj):
|
||
|
return self._typed_dict_schema(obj, None)
|
||
|
elif _typing_extra.is_namedtuple(obj):
|
||
|
return self._namedtuple_schema(obj, None)
|
||
|
elif _typing_extra.is_new_type(obj):
|
||
|
# NewType, can't use isinstance because it fails <3.10
|
||
|
return self.generate_schema(obj.__supertype__)
|
||
|
elif obj == re.Pattern:
|
||
|
return self._pattern_schema(obj)
|
||
|
elif obj is collections.abc.Hashable or obj is typing.Hashable:
|
||
|
return self._hashable_schema()
|
||
|
elif isinstance(obj, typing.TypeVar):
|
||
|
return self._unsubstituted_typevar_schema(obj)
|
||
|
elif is_finalvar(obj):
|
||
|
if obj is Final:
|
||
|
return core_schema.any_schema()
|
||
|
return self.generate_schema(
|
||
|
self._get_first_arg_or_any(obj),
|
||
|
)
|
||
|
elif isinstance(obj, (FunctionType, LambdaType, MethodType, partial)):
|
||
|
return self._callable_schema(obj)
|
||
|
elif inspect.isclass(obj) and issubclass(obj, Enum):
|
||
|
from ._std_types_schema import get_enum_core_schema
|
||
|
|
||
|
return get_enum_core_schema(obj, self._config_wrapper.config_dict)
|
||
|
|
||
|
if _typing_extra.is_dataclass(obj):
|
||
|
return self._dataclass_schema(obj, None)
|
||
|
res = self._get_prepare_pydantic_annotations_for_known_type(obj, ())
|
||
|
if res is not None:
|
||
|
source_type, annotations = res
|
||
|
return self._apply_annotations(source_type, annotations)
|
||
|
|
||
|
origin = get_origin(obj)
|
||
|
if origin is not None:
|
||
|
return self._match_generic_type(obj, origin)
|
||
|
|
||
|
if self._arbitrary_types:
|
||
|
return self._arbitrary_type_schema(obj)
|
||
|
return self._unknown_type_schema(obj)
|
||
|
|
||
|
def _match_generic_type(self, obj: Any, origin: Any) -> CoreSchema: # noqa: C901
|
||
|
if isinstance(origin, TypeAliasType):
|
||
|
return self._type_alias_type_schema(obj)
|
||
|
|
||
|
# Need to handle generic dataclasses before looking for the schema properties because attribute accesses
|
||
|
# on _GenericAlias delegate to the origin type, so lose the information about the concrete parametrization
|
||
|
# As a result, currently, there is no way to cache the schema for generic dataclasses. This may be possible
|
||
|
# to resolve by modifying the value returned by `Generic.__class_getitem__`, but that is a dangerous game.
|
||
|
if _typing_extra.is_dataclass(origin):
|
||
|
return self._dataclass_schema(obj, origin)
|
||
|
if _typing_extra.is_namedtuple(origin):
|
||
|
return self._namedtuple_schema(obj, origin)
|
||
|
|
||
|
from_property = self._generate_schema_from_property(origin, obj)
|
||
|
if from_property is not None:
|
||
|
return from_property
|
||
|
|
||
|
if _typing_extra.origin_is_union(origin):
|
||
|
return self._union_schema(obj)
|
||
|
elif origin in TUPLE_TYPES:
|
||
|
return self._tuple_schema(obj)
|
||
|
elif origin in LIST_TYPES:
|
||
|
return self._list_schema(obj, self._get_first_arg_or_any(obj))
|
||
|
elif origin in SET_TYPES:
|
||
|
return self._set_schema(obj, self._get_first_arg_or_any(obj))
|
||
|
elif origin in FROZEN_SET_TYPES:
|
||
|
return self._frozenset_schema(obj, self._get_first_arg_or_any(obj))
|
||
|
elif origin in DICT_TYPES:
|
||
|
return self._dict_schema(obj, *self._get_first_two_args_or_any(obj))
|
||
|
elif is_typeddict(origin):
|
||
|
return self._typed_dict_schema(obj, origin)
|
||
|
elif origin in (typing.Type, type):
|
||
|
return self._subclass_schema(obj)
|
||
|
elif origin in {typing.Sequence, collections.abc.Sequence}:
|
||
|
return self._sequence_schema(obj)
|
||
|
elif origin in {typing.Iterable, collections.abc.Iterable, typing.Generator, collections.abc.Generator}:
|
||
|
return self._iterable_schema(obj)
|
||
|
elif origin in (re.Pattern, typing.Pattern):
|
||
|
return self._pattern_schema(obj)
|
||
|
|
||
|
if self._arbitrary_types:
|
||
|
return self._arbitrary_type_schema(origin)
|
||
|
return self._unknown_type_schema(obj)
|
||
|
|
||
|
def _generate_td_field_schema(
|
||
|
self,
|
||
|
name: str,
|
||
|
field_info: FieldInfo,
|
||
|
decorators: DecoratorInfos,
|
||
|
*,
|
||
|
required: bool = True,
|
||
|
) -> core_schema.TypedDictField:
|
||
|
"""Prepare a TypedDictField to represent a model or typeddict field."""
|
||
|
common_field = self._common_field_schema(name, field_info, decorators)
|
||
|
return core_schema.typed_dict_field(
|
||
|
common_field['schema'],
|
||
|
required=False if not field_info.is_required() else required,
|
||
|
serialization_exclude=common_field['serialization_exclude'],
|
||
|
validation_alias=common_field['validation_alias'],
|
||
|
serialization_alias=common_field['serialization_alias'],
|
||
|
metadata=common_field['metadata'],
|
||
|
)
|
||
|
|
||
|
def _generate_md_field_schema(
|
||
|
self,
|
||
|
name: str,
|
||
|
field_info: FieldInfo,
|
||
|
decorators: DecoratorInfos,
|
||
|
) -> core_schema.ModelField:
|
||
|
"""Prepare a ModelField to represent a model field."""
|
||
|
common_field = self._common_field_schema(name, field_info, decorators)
|
||
|
return core_schema.model_field(
|
||
|
common_field['schema'],
|
||
|
serialization_exclude=common_field['serialization_exclude'],
|
||
|
validation_alias=common_field['validation_alias'],
|
||
|
serialization_alias=common_field['serialization_alias'],
|
||
|
frozen=common_field['frozen'],
|
||
|
metadata=common_field['metadata'],
|
||
|
)
|
||
|
|
||
|
def _generate_dc_field_schema(
|
||
|
self,
|
||
|
name: str,
|
||
|
field_info: FieldInfo,
|
||
|
decorators: DecoratorInfos,
|
||
|
) -> core_schema.DataclassField:
|
||
|
"""Prepare a DataclassField to represent the parameter/field, of a dataclass."""
|
||
|
common_field = self._common_field_schema(name, field_info, decorators)
|
||
|
return core_schema.dataclass_field(
|
||
|
name,
|
||
|
common_field['schema'],
|
||
|
init=field_info.init,
|
||
|
init_only=field_info.init_var or None,
|
||
|
kw_only=None if field_info.kw_only else False,
|
||
|
serialization_exclude=common_field['serialization_exclude'],
|
||
|
validation_alias=common_field['validation_alias'],
|
||
|
serialization_alias=common_field['serialization_alias'],
|
||
|
frozen=common_field['frozen'],
|
||
|
metadata=common_field['metadata'],
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def _apply_alias_generator_to_field_info(
|
||
|
alias_generator: Callable[[str], str] | AliasGenerator, field_info: FieldInfo, field_name: str
|
||
|
) -> None:
|
||
|
"""Apply an alias_generator to aliases on a FieldInfo instance if appropriate.
|
||
|
|
||
|
Args:
|
||
|
alias_generator: A callable that takes a string and returns a string, or an AliasGenerator instance.
|
||
|
field_info: The FieldInfo instance to which the alias_generator is (maybe) applied.
|
||
|
field_name: The name of the field from which to generate the alias.
|
||
|
"""
|
||
|
# Apply an alias_generator if
|
||
|
# 1. An alias is not specified
|
||
|
# 2. An alias is specified, but the priority is <= 1
|
||
|
if (
|
||
|
field_info.alias_priority is None
|
||
|
or field_info.alias_priority <= 1
|
||
|
or field_info.alias is None
|
||
|
or field_info.validation_alias is None
|
||
|
or field_info.serialization_alias is None
|
||
|
):
|
||
|
alias, validation_alias, serialization_alias = None, None, None
|
||
|
|
||
|
if isinstance(alias_generator, AliasGenerator):
|
||
|
alias, validation_alias, serialization_alias = alias_generator.generate_aliases(field_name)
|
||
|
elif isinstance(alias_generator, Callable):
|
||
|
alias = alias_generator(field_name)
|
||
|
if not isinstance(alias, str):
|
||
|
raise TypeError(f'alias_generator {alias_generator} must return str, not {alias.__class__}')
|
||
|
|
||
|
# if priority is not set, we set to 1
|
||
|
# which supports the case where the alias_generator from a child class is used
|
||
|
# to generate an alias for a field in a parent class
|
||
|
if field_info.alias_priority is None or field_info.alias_priority <= 1:
|
||
|
field_info.alias_priority = 1
|
||
|
|
||
|
# if the priority is 1, then we set the aliases to the generated alias
|
||
|
if field_info.alias_priority == 1:
|
||
|
field_info.serialization_alias = _get_first_non_null(serialization_alias, alias)
|
||
|
field_info.validation_alias = _get_first_non_null(validation_alias, alias)
|
||
|
field_info.alias = alias
|
||
|
|
||
|
# if any of the aliases are not set, then we set them to the corresponding generated alias
|
||
|
if field_info.alias is None:
|
||
|
field_info.alias = alias
|
||
|
if field_info.serialization_alias is None:
|
||
|
field_info.serialization_alias = _get_first_non_null(serialization_alias, alias)
|
||
|
if field_info.validation_alias is None:
|
||
|
field_info.validation_alias = _get_first_non_null(validation_alias, alias)
|
||
|
|
||
|
@staticmethod
|
||
|
def _apply_alias_generator_to_computed_field_info(
|
||
|
alias_generator: Callable[[str], str] | AliasGenerator,
|
||
|
computed_field_info: ComputedFieldInfo,
|
||
|
computed_field_name: str,
|
||
|
):
|
||
|
"""Apply an alias_generator to alias on a ComputedFieldInfo instance if appropriate.
|
||
|
|
||
|
Args:
|
||
|
alias_generator: A callable that takes a string and returns a string, or an AliasGenerator instance.
|
||
|
computed_field_info: The ComputedFieldInfo instance to which the alias_generator is (maybe) applied.
|
||
|
computed_field_name: The name of the computed field from which to generate the alias.
|
||
|
"""
|
||
|
# Apply an alias_generator if
|
||
|
# 1. An alias is not specified
|
||
|
# 2. An alias is specified, but the priority is <= 1
|
||
|
|
||
|
if (
|
||
|
computed_field_info.alias_priority is None
|
||
|
or computed_field_info.alias_priority <= 1
|
||
|
or computed_field_info.alias is None
|
||
|
):
|
||
|
alias, validation_alias, serialization_alias = None, None, None
|
||
|
|
||
|
if isinstance(alias_generator, AliasGenerator):
|
||
|
alias, validation_alias, serialization_alias = alias_generator.generate_aliases(computed_field_name)
|
||
|
elif isinstance(alias_generator, Callable):
|
||
|
alias = alias_generator(computed_field_name)
|
||
|
if not isinstance(alias, str):
|
||
|
raise TypeError(f'alias_generator {alias_generator} must return str, not {alias.__class__}')
|
||
|
|
||
|
# if priority is not set, we set to 1
|
||
|
# which supports the case where the alias_generator from a child class is used
|
||
|
# to generate an alias for a field in a parent class
|
||
|
if computed_field_info.alias_priority is None or computed_field_info.alias_priority <= 1:
|
||
|
computed_field_info.alias_priority = 1
|
||
|
|
||
|
# if the priority is 1, then we set the aliases to the generated alias
|
||
|
# note that we use the serialization_alias with priority over alias, as computed_field
|
||
|
# aliases are used for serialization only (not validation)
|
||
|
if computed_field_info.alias_priority == 1:
|
||
|
computed_field_info.alias = _get_first_non_null(serialization_alias, alias)
|
||
|
|
||
|
def _common_field_schema( # C901
|
||
|
self, name: str, field_info: FieldInfo, decorators: DecoratorInfos
|
||
|
) -> _CommonField:
|
||
|
# Update FieldInfo annotation if appropriate:
|
||
|
from .. import AliasChoices, AliasPath
|
||
|
from ..fields import FieldInfo
|
||
|
|
||
|
if has_instance_in_type(field_info.annotation, (ForwardRef, str)):
|
||
|
types_namespace = self._types_namespace
|
||
|
if self._typevars_map:
|
||
|
types_namespace = (types_namespace or {}).copy()
|
||
|
# Ensure that typevars get mapped to their concrete types:
|
||
|
types_namespace.update({k.__name__: v for k, v in self._typevars_map.items()})
|
||
|
|
||
|
evaluated = _typing_extra.eval_type_lenient(field_info.annotation, types_namespace)
|
||
|
if evaluated is not field_info.annotation and not has_instance_in_type(evaluated, PydanticRecursiveRef):
|
||
|
new_field_info = FieldInfo.from_annotation(evaluated)
|
||
|
field_info.annotation = new_field_info.annotation
|
||
|
|
||
|
# Handle any field info attributes that may have been obtained from now-resolved annotations
|
||
|
for k, v in new_field_info._attributes_set.items():
|
||
|
# If an attribute is already set, it means it was set by assigning to a call to Field (or just a
|
||
|
# default value), and that should take the highest priority. So don't overwrite existing attributes.
|
||
|
# We skip over "attributes" that are present in the metadata_lookup dict because these won't
|
||
|
# actually end up as attributes of the `FieldInfo` instance.
|
||
|
if k not in field_info._attributes_set and k not in field_info.metadata_lookup:
|
||
|
setattr(field_info, k, v)
|
||
|
|
||
|
# Finally, ensure the field info also reflects all the `_attributes_set` that are actually metadata.
|
||
|
field_info.metadata = [*new_field_info.metadata, *field_info.metadata]
|
||
|
|
||
|
source_type, annotations = field_info.annotation, field_info.metadata
|
||
|
|
||
|
def set_discriminator(schema: CoreSchema) -> CoreSchema:
|
||
|
schema = self._apply_discriminator_to_union(schema, field_info.discriminator)
|
||
|
return schema
|
||
|
|
||
|
with self.field_name_stack.push(name):
|
||
|
if field_info.discriminator is not None:
|
||
|
schema = self._apply_annotations(source_type, annotations, transform_inner_schema=set_discriminator)
|
||
|
else:
|
||
|
schema = self._apply_annotations(
|
||
|
source_type,
|
||
|
annotations,
|
||
|
)
|
||
|
|
||
|
# This V1 compatibility shim should eventually be removed
|
||
|
# push down any `each_item=True` validators
|
||
|
# note that this won't work for any Annotated types that get wrapped by a function validator
|
||
|
# but that's okay because that didn't exist in V1
|
||
|
this_field_validators = filter_field_decorator_info_by_field(decorators.validators.values(), name)
|
||
|
if _validators_require_validate_default(this_field_validators):
|
||
|
field_info.validate_default = True
|
||
|
each_item_validators = [v for v in this_field_validators if v.info.each_item is True]
|
||
|
this_field_validators = [v for v in this_field_validators if v not in each_item_validators]
|
||
|
schema = apply_each_item_validators(schema, each_item_validators, name)
|
||
|
|
||
|
schema = apply_validators(schema, filter_field_decorator_info_by_field(this_field_validators, name), name)
|
||
|
schema = apply_validators(
|
||
|
schema, filter_field_decorator_info_by_field(decorators.field_validators.values(), name), name
|
||
|
)
|
||
|
|
||
|
# the default validator needs to go outside of any other validators
|
||
|
# so that it is the topmost validator for the field validator
|
||
|
# which uses it to check if the field has a default value or not
|
||
|
if not field_info.is_required():
|
||
|
schema = wrap_default(field_info, schema)
|
||
|
|
||
|
schema = self._apply_field_serializers(
|
||
|
schema, filter_field_decorator_info_by_field(decorators.field_serializers.values(), name)
|
||
|
)
|
||
|
json_schema_updates = {
|
||
|
'title': field_info.title,
|
||
|
'description': field_info.description,
|
||
|
'deprecated': bool(field_info.deprecated) or field_info.deprecated == '' or None,
|
||
|
'examples': to_jsonable_python(field_info.examples),
|
||
|
}
|
||
|
json_schema_updates = {k: v for k, v in json_schema_updates.items() if v is not None}
|
||
|
|
||
|
json_schema_extra = field_info.json_schema_extra
|
||
|
|
||
|
metadata = build_metadata_dict(
|
||
|
js_annotation_functions=[get_json_schema_update_func(json_schema_updates, json_schema_extra)]
|
||
|
)
|
||
|
|
||
|
alias_generator = self._config_wrapper.alias_generator
|
||
|
if alias_generator is not None:
|
||
|
self._apply_alias_generator_to_field_info(alias_generator, field_info, name)
|
||
|
|
||
|
if isinstance(field_info.validation_alias, (AliasChoices, AliasPath)):
|
||
|
validation_alias = field_info.validation_alias.convert_to_aliases()
|
||
|
else:
|
||
|
validation_alias = field_info.validation_alias
|
||
|
|
||
|
return _common_field(
|
||
|
schema,
|
||
|
serialization_exclude=True if field_info.exclude else None,
|
||
|
validation_alias=validation_alias,
|
||
|
serialization_alias=field_info.serialization_alias,
|
||
|
frozen=field_info.frozen,
|
||
|
metadata=metadata,
|
||
|
)
|
||
|
|
||
|
def _union_schema(self, union_type: Any) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for a Union."""
|
||
|
args = self._get_args_resolving_forward_refs(union_type, required=True)
|
||
|
choices: list[CoreSchema] = []
|
||
|
nullable = False
|
||
|
for arg in args:
|
||
|
if arg is None or arg is _typing_extra.NoneType:
|
||
|
nullable = True
|
||
|
else:
|
||
|
choices.append(self.generate_schema(arg))
|
||
|
|
||
|
if len(choices) == 1:
|
||
|
s = choices[0]
|
||
|
else:
|
||
|
choices_with_tags: list[CoreSchema | tuple[CoreSchema, str]] = []
|
||
|
for choice in choices:
|
||
|
tag = choice.get('metadata', {}).get(_core_utils.TAGGED_UNION_TAG_KEY)
|
||
|
if tag is not None:
|
||
|
choices_with_tags.append((choice, tag))
|
||
|
else:
|
||
|
choices_with_tags.append(choice)
|
||
|
s = core_schema.union_schema(choices_with_tags)
|
||
|
|
||
|
if nullable:
|
||
|
s = core_schema.nullable_schema(s)
|
||
|
return s
|
||
|
|
||
|
def _type_alias_type_schema(
|
||
|
self,
|
||
|
obj: Any, # TypeAliasType
|
||
|
) -> CoreSchema:
|
||
|
with self.defs.get_schema_or_ref(obj) as (ref, maybe_schema):
|
||
|
if maybe_schema is not None:
|
||
|
return maybe_schema
|
||
|
|
||
|
origin = get_origin(obj) or obj
|
||
|
|
||
|
annotation = origin.__value__
|
||
|
typevars_map = get_standard_typevars_map(obj)
|
||
|
|
||
|
with self._types_namespace_stack.push(origin):
|
||
|
annotation = _typing_extra.eval_type_lenient(annotation, self._types_namespace)
|
||
|
annotation = replace_types(annotation, typevars_map)
|
||
|
schema = self.generate_schema(annotation)
|
||
|
assert schema['type'] != 'definitions'
|
||
|
schema['ref'] = ref # type: ignore
|
||
|
self.defs.definitions[ref] = schema
|
||
|
return core_schema.definition_reference_schema(ref)
|
||
|
|
||
|
def _literal_schema(self, literal_type: Any) -> CoreSchema:
|
||
|
"""Generate schema for a Literal."""
|
||
|
expected = _typing_extra.all_literal_values(literal_type)
|
||
|
assert expected, f'literal "expected" cannot be empty, obj={literal_type}'
|
||
|
return core_schema.literal_schema(expected)
|
||
|
|
||
|
def _typed_dict_schema(self, typed_dict_cls: Any, origin: Any) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for a TypedDict.
|
||
|
|
||
|
It is not possible to track required/optional keys in TypedDict without __required_keys__
|
||
|
since TypedDict.__new__ erases the base classes (it replaces them with just `dict`)
|
||
|
and thus we can track usage of total=True/False
|
||
|
__required_keys__ was added in Python 3.9
|
||
|
(https://github.com/miss-islington/cpython/blob/1e9939657dd1f8eb9f596f77c1084d2d351172fc/Doc/library/typing.rst?plain=1#L1546-L1548)
|
||
|
however it is buggy
|
||
|
(https://github.com/python/typing_extensions/blob/ac52ac5f2cb0e00e7988bae1e2a1b8257ac88d6d/src/typing_extensions.py#L657-L666).
|
||
|
|
||
|
On 3.11 but < 3.12 TypedDict does not preserve inheritance information.
|
||
|
|
||
|
Hence to avoid creating validators that do not do what users expect we only
|
||
|
support typing.TypedDict on Python >= 3.12 or typing_extension.TypedDict on all versions
|
||
|
"""
|
||
|
from ..fields import FieldInfo
|
||
|
|
||
|
with self.model_type_stack.push(typed_dict_cls), self.defs.get_schema_or_ref(typed_dict_cls) as (
|
||
|
typed_dict_ref,
|
||
|
maybe_schema,
|
||
|
):
|
||
|
if maybe_schema is not None:
|
||
|
return maybe_schema
|
||
|
|
||
|
typevars_map = get_standard_typevars_map(typed_dict_cls)
|
||
|
if origin is not None:
|
||
|
typed_dict_cls = origin
|
||
|
|
||
|
if not _SUPPORTS_TYPEDDICT and type(typed_dict_cls).__module__ == 'typing':
|
||
|
raise PydanticUserError(
|
||
|
'Please use `typing_extensions.TypedDict` instead of `typing.TypedDict` on Python < 3.12.',
|
||
|
code='typed-dict-version',
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
config: ConfigDict | None = get_attribute_from_bases(typed_dict_cls, '__pydantic_config__')
|
||
|
except AttributeError:
|
||
|
config = None
|
||
|
|
||
|
with self._config_wrapper_stack.push(config), self._types_namespace_stack.push(typed_dict_cls):
|
||
|
core_config = self._config_wrapper.core_config(typed_dict_cls)
|
||
|
|
||
|
self = self._current_generate_schema
|
||
|
|
||
|
required_keys: frozenset[str] = typed_dict_cls.__required_keys__
|
||
|
|
||
|
fields: dict[str, core_schema.TypedDictField] = {}
|
||
|
|
||
|
decorators = DecoratorInfos.build(typed_dict_cls)
|
||
|
|
||
|
if self._config_wrapper.use_attribute_docstrings:
|
||
|
field_docstrings = extract_docstrings_from_cls(typed_dict_cls, use_inspect=True)
|
||
|
else:
|
||
|
field_docstrings = None
|
||
|
|
||
|
for field_name, annotation in get_type_hints_infer_globalns(
|
||
|
typed_dict_cls, localns=self._types_namespace, include_extras=True
|
||
|
).items():
|
||
|
annotation = replace_types(annotation, typevars_map)
|
||
|
required = field_name in required_keys
|
||
|
|
||
|
if get_origin(annotation) == _typing_extra.Required:
|
||
|
required = True
|
||
|
annotation = self._get_args_resolving_forward_refs(
|
||
|
annotation,
|
||
|
required=True,
|
||
|
)[0]
|
||
|
elif get_origin(annotation) == _typing_extra.NotRequired:
|
||
|
required = False
|
||
|
annotation = self._get_args_resolving_forward_refs(
|
||
|
annotation,
|
||
|
required=True,
|
||
|
)[0]
|
||
|
|
||
|
field_info = FieldInfo.from_annotation(annotation)
|
||
|
if (
|
||
|
field_docstrings is not None
|
||
|
and field_info.description is None
|
||
|
and field_name in field_docstrings
|
||
|
):
|
||
|
field_info.description = field_docstrings[field_name]
|
||
|
fields[field_name] = self._generate_td_field_schema(
|
||
|
field_name, field_info, decorators, required=required
|
||
|
)
|
||
|
|
||
|
metadata = build_metadata_dict(
|
||
|
js_functions=[partial(modify_model_json_schema, cls=typed_dict_cls)], typed_dict_cls=typed_dict_cls
|
||
|
)
|
||
|
|
||
|
td_schema = core_schema.typed_dict_schema(
|
||
|
fields,
|
||
|
computed_fields=[
|
||
|
self._computed_field_schema(d, decorators.field_serializers)
|
||
|
for d in decorators.computed_fields.values()
|
||
|
],
|
||
|
ref=typed_dict_ref,
|
||
|
metadata=metadata,
|
||
|
config=core_config,
|
||
|
)
|
||
|
|
||
|
schema = self._apply_model_serializers(td_schema, decorators.model_serializers.values())
|
||
|
schema = apply_model_validators(schema, decorators.model_validators.values(), 'all')
|
||
|
self.defs.definitions[typed_dict_ref] = schema
|
||
|
return core_schema.definition_reference_schema(typed_dict_ref)
|
||
|
|
||
|
def _namedtuple_schema(self, namedtuple_cls: Any, origin: Any) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for a NamedTuple."""
|
||
|
with self.model_type_stack.push(namedtuple_cls), self.defs.get_schema_or_ref(namedtuple_cls) as (
|
||
|
namedtuple_ref,
|
||
|
maybe_schema,
|
||
|
):
|
||
|
if maybe_schema is not None:
|
||
|
return maybe_schema
|
||
|
typevars_map = get_standard_typevars_map(namedtuple_cls)
|
||
|
if origin is not None:
|
||
|
namedtuple_cls = origin
|
||
|
|
||
|
annotations: dict[str, Any] = get_type_hints_infer_globalns(
|
||
|
namedtuple_cls, include_extras=True, localns=self._types_namespace
|
||
|
)
|
||
|
if not annotations:
|
||
|
# annotations is empty, happens if namedtuple_cls defined via collections.namedtuple(...)
|
||
|
annotations = {k: Any for k in namedtuple_cls._fields}
|
||
|
|
||
|
if typevars_map:
|
||
|
annotations = {
|
||
|
field_name: replace_types(annotation, typevars_map)
|
||
|
for field_name, annotation in annotations.items()
|
||
|
}
|
||
|
|
||
|
arguments_schema = core_schema.arguments_schema(
|
||
|
[
|
||
|
self._generate_parameter_schema(
|
||
|
field_name, annotation, default=namedtuple_cls._field_defaults.get(field_name, Parameter.empty)
|
||
|
)
|
||
|
for field_name, annotation in annotations.items()
|
||
|
],
|
||
|
metadata=build_metadata_dict(js_prefer_positional_arguments=True),
|
||
|
)
|
||
|
return core_schema.call_schema(arguments_schema, namedtuple_cls, ref=namedtuple_ref)
|
||
|
|
||
|
def _generate_parameter_schema(
|
||
|
self,
|
||
|
name: str,
|
||
|
annotation: type[Any],
|
||
|
default: Any = Parameter.empty,
|
||
|
mode: Literal['positional_only', 'positional_or_keyword', 'keyword_only'] | None = None,
|
||
|
) -> core_schema.ArgumentsParameter:
|
||
|
"""Prepare a ArgumentsParameter to represent a field in a namedtuple or function signature."""
|
||
|
from ..fields import FieldInfo
|
||
|
|
||
|
if default is Parameter.empty:
|
||
|
field = FieldInfo.from_annotation(annotation)
|
||
|
else:
|
||
|
field = FieldInfo.from_annotated_attribute(annotation, default)
|
||
|
assert field.annotation is not None, 'field.annotation should not be None when generating a schema'
|
||
|
source_type, annotations = field.annotation, field.metadata
|
||
|
with self.field_name_stack.push(name):
|
||
|
schema = self._apply_annotations(source_type, annotations)
|
||
|
|
||
|
if not field.is_required():
|
||
|
schema = wrap_default(field, schema)
|
||
|
|
||
|
parameter_schema = core_schema.arguments_parameter(name, schema)
|
||
|
if mode is not None:
|
||
|
parameter_schema['mode'] = mode
|
||
|
if field.alias is not None:
|
||
|
parameter_schema['alias'] = field.alias
|
||
|
else:
|
||
|
alias_generator = self._config_wrapper.alias_generator
|
||
|
if isinstance(alias_generator, AliasGenerator) and alias_generator.alias is not None:
|
||
|
parameter_schema['alias'] = alias_generator.alias(name)
|
||
|
elif isinstance(alias_generator, Callable):
|
||
|
parameter_schema['alias'] = alias_generator(name)
|
||
|
return parameter_schema
|
||
|
|
||
|
def _tuple_schema(self, tuple_type: Any) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for a Tuple, e.g. `tuple[int, str]` or `tuple[int, ...]`."""
|
||
|
# TODO: do we really need to resolve type vars here?
|
||
|
typevars_map = get_standard_typevars_map(tuple_type)
|
||
|
params = self._get_args_resolving_forward_refs(tuple_type)
|
||
|
|
||
|
if typevars_map and params:
|
||
|
params = tuple(replace_types(param, typevars_map) for param in params)
|
||
|
|
||
|
# NOTE: subtle difference: `tuple[()]` gives `params=()`, whereas `typing.Tuple[()]` gives `params=((),)`
|
||
|
# This is only true for <3.11, on Python 3.11+ `typing.Tuple[()]` gives `params=()`
|
||
|
if not params:
|
||
|
if tuple_type in TUPLE_TYPES:
|
||
|
return core_schema.tuple_schema([core_schema.any_schema()], variadic_item_index=0)
|
||
|
else:
|
||
|
# special case for `tuple[()]` which means `tuple[]` - an empty tuple
|
||
|
return core_schema.tuple_schema([])
|
||
|
elif params[-1] is Ellipsis:
|
||
|
if len(params) == 2:
|
||
|
return core_schema.tuple_schema([self.generate_schema(params[0])], variadic_item_index=0)
|
||
|
else:
|
||
|
# TODO: something like https://github.com/pydantic/pydantic/issues/5952
|
||
|
raise ValueError('Variable tuples can only have one type')
|
||
|
elif len(params) == 1 and params[0] == ():
|
||
|
# special case for `Tuple[()]` which means `Tuple[]` - an empty tuple
|
||
|
# NOTE: This conditional can be removed when we drop support for Python 3.10.
|
||
|
return core_schema.tuple_schema([])
|
||
|
else:
|
||
|
return core_schema.tuple_schema([self.generate_schema(param) for param in params])
|
||
|
|
||
|
def _type_schema(self) -> core_schema.CoreSchema:
|
||
|
return core_schema.custom_error_schema(
|
||
|
core_schema.is_instance_schema(type),
|
||
|
custom_error_type='is_type',
|
||
|
custom_error_message='Input should be a type',
|
||
|
)
|
||
|
|
||
|
def _union_is_subclass_schema(self, union_type: Any) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for `Type[Union[X, ...]]`."""
|
||
|
args = self._get_args_resolving_forward_refs(union_type, required=True)
|
||
|
return core_schema.union_schema([self.generate_schema(typing.Type[args]) for args in args])
|
||
|
|
||
|
def _subclass_schema(self, type_: Any) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for a Type, e.g. `Type[int]`."""
|
||
|
type_param = self._get_first_arg_or_any(type_)
|
||
|
if type_param == Any:
|
||
|
return self._type_schema()
|
||
|
elif isinstance(type_param, typing.TypeVar):
|
||
|
if type_param.__bound__:
|
||
|
if _typing_extra.origin_is_union(get_origin(type_param.__bound__)):
|
||
|
return self._union_is_subclass_schema(type_param.__bound__)
|
||
|
return core_schema.is_subclass_schema(type_param.__bound__)
|
||
|
elif type_param.__constraints__:
|
||
|
return core_schema.union_schema(
|
||
|
[self.generate_schema(typing.Type[c]) for c in type_param.__constraints__]
|
||
|
)
|
||
|
else:
|
||
|
return self._type_schema()
|
||
|
elif _typing_extra.origin_is_union(get_origin(type_param)):
|
||
|
return self._union_is_subclass_schema(type_param)
|
||
|
else:
|
||
|
return core_schema.is_subclass_schema(type_param)
|
||
|
|
||
|
def _sequence_schema(self, sequence_type: Any) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for a Sequence, e.g. `Sequence[int]`."""
|
||
|
from ._std_types_schema import serialize_sequence_via_list
|
||
|
|
||
|
item_type = self._get_first_arg_or_any(sequence_type)
|
||
|
item_type_schema = self.generate_schema(item_type)
|
||
|
list_schema = core_schema.list_schema(item_type_schema)
|
||
|
|
||
|
python_schema = core_schema.is_instance_schema(typing.Sequence, cls_repr='Sequence')
|
||
|
if item_type != Any:
|
||
|
from ._validators import sequence_validator
|
||
|
|
||
|
python_schema = core_schema.chain_schema(
|
||
|
[python_schema, core_schema.no_info_wrap_validator_function(sequence_validator, list_schema)],
|
||
|
)
|
||
|
|
||
|
serialization = core_schema.wrap_serializer_function_ser_schema(
|
||
|
serialize_sequence_via_list, schema=item_type_schema, info_arg=True
|
||
|
)
|
||
|
return core_schema.json_or_python_schema(
|
||
|
json_schema=list_schema, python_schema=python_schema, serialization=serialization
|
||
|
)
|
||
|
|
||
|
def _iterable_schema(self, type_: Any) -> core_schema.GeneratorSchema:
|
||
|
"""Generate a schema for an `Iterable`."""
|
||
|
item_type = self._get_first_arg_or_any(type_)
|
||
|
|
||
|
return core_schema.generator_schema(self.generate_schema(item_type))
|
||
|
|
||
|
def _pattern_schema(self, pattern_type: Any) -> core_schema.CoreSchema:
|
||
|
from . import _validators
|
||
|
|
||
|
metadata = build_metadata_dict(js_functions=[lambda _1, _2: {'type': 'string', 'format': 'regex'}])
|
||
|
ser = core_schema.plain_serializer_function_ser_schema(
|
||
|
attrgetter('pattern'), when_used='json', return_schema=core_schema.str_schema()
|
||
|
)
|
||
|
if pattern_type == typing.Pattern or pattern_type == re.Pattern:
|
||
|
# bare type
|
||
|
return core_schema.no_info_plain_validator_function(
|
||
|
_validators.pattern_either_validator, serialization=ser, metadata=metadata
|
||
|
)
|
||
|
|
||
|
param = self._get_args_resolving_forward_refs(
|
||
|
pattern_type,
|
||
|
required=True,
|
||
|
)[0]
|
||
|
if param == str:
|
||
|
return core_schema.no_info_plain_validator_function(
|
||
|
_validators.pattern_str_validator, serialization=ser, metadata=metadata
|
||
|
)
|
||
|
elif param == bytes:
|
||
|
return core_schema.no_info_plain_validator_function(
|
||
|
_validators.pattern_bytes_validator, serialization=ser, metadata=metadata
|
||
|
)
|
||
|
else:
|
||
|
raise PydanticSchemaGenerationError(f'Unable to generate pydantic-core schema for {pattern_type!r}.')
|
||
|
|
||
|
def _hashable_schema(self) -> core_schema.CoreSchema:
|
||
|
return core_schema.custom_error_schema(
|
||
|
core_schema.is_instance_schema(collections.abc.Hashable),
|
||
|
custom_error_type='is_hashable',
|
||
|
custom_error_message='Input should be hashable',
|
||
|
)
|
||
|
|
||
|
def _dataclass_schema(
|
||
|
self, dataclass: type[StandardDataclass], origin: type[StandardDataclass] | None
|
||
|
) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for a dataclass."""
|
||
|
with self.model_type_stack.push(dataclass), self.defs.get_schema_or_ref(dataclass) as (
|
||
|
dataclass_ref,
|
||
|
maybe_schema,
|
||
|
):
|
||
|
if maybe_schema is not None:
|
||
|
return maybe_schema
|
||
|
|
||
|
typevars_map = get_standard_typevars_map(dataclass)
|
||
|
if origin is not None:
|
||
|
dataclass = origin
|
||
|
|
||
|
with ExitStack() as dataclass_bases_stack:
|
||
|
# Pushing a namespace prioritises items already in the stack, so iterate though the MRO forwards
|
||
|
for dataclass_base in dataclass.__mro__:
|
||
|
if dataclasses.is_dataclass(dataclass_base):
|
||
|
dataclass_bases_stack.enter_context(self._types_namespace_stack.push(dataclass_base))
|
||
|
|
||
|
# Pushing a config overwrites the previous config, so iterate though the MRO backwards
|
||
|
for dataclass_base in reversed(dataclass.__mro__):
|
||
|
if dataclasses.is_dataclass(dataclass_base):
|
||
|
config = getattr(dataclass_base, '__pydantic_config__', None)
|
||
|
dataclass_bases_stack.enter_context(self._config_wrapper_stack.push(config))
|
||
|
|
||
|
core_config = self._config_wrapper.core_config(dataclass)
|
||
|
|
||
|
self = self._current_generate_schema
|
||
|
|
||
|
from ..dataclasses import is_pydantic_dataclass
|
||
|
|
||
|
if is_pydantic_dataclass(dataclass):
|
||
|
fields = deepcopy(dataclass.__pydantic_fields__)
|
||
|
if typevars_map:
|
||
|
for field in fields.values():
|
||
|
field.apply_typevars_map(typevars_map, self._types_namespace)
|
||
|
else:
|
||
|
fields = collect_dataclass_fields(
|
||
|
dataclass,
|
||
|
self._types_namespace,
|
||
|
typevars_map=typevars_map,
|
||
|
)
|
||
|
|
||
|
# disallow combination of init=False on a dataclass field and extra='allow' on a dataclass
|
||
|
if self._config_wrapper_stack.tail.extra == 'allow':
|
||
|
# disallow combination of init=False on a dataclass field and extra='allow' on a dataclass
|
||
|
for field_name, field in fields.items():
|
||
|
if field.init is False:
|
||
|
raise PydanticUserError(
|
||
|
f'Field {field_name} has `init=False` and dataclass has config setting `extra="allow"`. '
|
||
|
f'This combination is not allowed.',
|
||
|
code='dataclass-init-false-extra-allow',
|
||
|
)
|
||
|
|
||
|
decorators = dataclass.__dict__.get('__pydantic_decorators__') or DecoratorInfos.build(dataclass)
|
||
|
# Move kw_only=False args to the start of the list, as this is how vanilla dataclasses work.
|
||
|
# Note that when kw_only is missing or None, it is treated as equivalent to kw_only=True
|
||
|
args = sorted(
|
||
|
(self._generate_dc_field_schema(k, v, decorators) for k, v in fields.items()),
|
||
|
key=lambda a: a.get('kw_only') is not False,
|
||
|
)
|
||
|
has_post_init = hasattr(dataclass, '__post_init__')
|
||
|
has_slots = hasattr(dataclass, '__slots__')
|
||
|
|
||
|
args_schema = core_schema.dataclass_args_schema(
|
||
|
dataclass.__name__,
|
||
|
args,
|
||
|
computed_fields=[
|
||
|
self._computed_field_schema(d, decorators.field_serializers)
|
||
|
for d in decorators.computed_fields.values()
|
||
|
],
|
||
|
collect_init_only=has_post_init,
|
||
|
)
|
||
|
|
||
|
inner_schema = apply_validators(args_schema, decorators.root_validators.values(), None)
|
||
|
|
||
|
model_validators = decorators.model_validators.values()
|
||
|
inner_schema = apply_model_validators(inner_schema, model_validators, 'inner')
|
||
|
|
||
|
dc_schema = core_schema.dataclass_schema(
|
||
|
dataclass,
|
||
|
inner_schema,
|
||
|
post_init=has_post_init,
|
||
|
ref=dataclass_ref,
|
||
|
fields=[field.name for field in dataclasses.fields(dataclass)],
|
||
|
slots=has_slots,
|
||
|
config=core_config,
|
||
|
)
|
||
|
schema = self._apply_model_serializers(dc_schema, decorators.model_serializers.values())
|
||
|
schema = apply_model_validators(schema, model_validators, 'outer')
|
||
|
self.defs.definitions[dataclass_ref] = schema
|
||
|
return core_schema.definition_reference_schema(dataclass_ref)
|
||
|
|
||
|
# Type checkers seem to assume ExitStack may suppress exceptions and therefore
|
||
|
# control flow can exit the `with` block without returning.
|
||
|
assert False, 'Unreachable'
|
||
|
|
||
|
def _callable_schema(self, function: Callable[..., Any]) -> core_schema.CallSchema:
|
||
|
"""Generate schema for a Callable.
|
||
|
|
||
|
TODO support functional validators once we support them in Config
|
||
|
"""
|
||
|
sig = signature(function)
|
||
|
|
||
|
type_hints = _typing_extra.get_function_type_hints(function)
|
||
|
|
||
|
mode_lookup: dict[_ParameterKind, Literal['positional_only', 'positional_or_keyword', 'keyword_only']] = {
|
||
|
Parameter.POSITIONAL_ONLY: 'positional_only',
|
||
|
Parameter.POSITIONAL_OR_KEYWORD: 'positional_or_keyword',
|
||
|
Parameter.KEYWORD_ONLY: 'keyword_only',
|
||
|
}
|
||
|
|
||
|
arguments_list: list[core_schema.ArgumentsParameter] = []
|
||
|
var_args_schema: core_schema.CoreSchema | None = None
|
||
|
var_kwargs_schema: core_schema.CoreSchema | None = None
|
||
|
|
||
|
for name, p in sig.parameters.items():
|
||
|
if p.annotation is sig.empty:
|
||
|
annotation = Any
|
||
|
else:
|
||
|
annotation = type_hints[name]
|
||
|
|
||
|
parameter_mode = mode_lookup.get(p.kind)
|
||
|
if parameter_mode is not None:
|
||
|
arg_schema = self._generate_parameter_schema(name, annotation, p.default, parameter_mode)
|
||
|
arguments_list.append(arg_schema)
|
||
|
elif p.kind == Parameter.VAR_POSITIONAL:
|
||
|
var_args_schema = self.generate_schema(annotation)
|
||
|
else:
|
||
|
assert p.kind == Parameter.VAR_KEYWORD, p.kind
|
||
|
var_kwargs_schema = self.generate_schema(annotation)
|
||
|
|
||
|
return_schema: core_schema.CoreSchema | None = None
|
||
|
config_wrapper = self._config_wrapper
|
||
|
if config_wrapper.validate_return:
|
||
|
return_hint = type_hints.get('return')
|
||
|
if return_hint is not None:
|
||
|
return_schema = self.generate_schema(return_hint)
|
||
|
|
||
|
return core_schema.call_schema(
|
||
|
core_schema.arguments_schema(
|
||
|
arguments_list,
|
||
|
var_args_schema=var_args_schema,
|
||
|
var_kwargs_schema=var_kwargs_schema,
|
||
|
populate_by_name=config_wrapper.populate_by_name,
|
||
|
),
|
||
|
function,
|
||
|
return_schema=return_schema,
|
||
|
)
|
||
|
|
||
|
def _unsubstituted_typevar_schema(self, typevar: typing.TypeVar) -> core_schema.CoreSchema:
|
||
|
assert isinstance(typevar, typing.TypeVar)
|
||
|
|
||
|
bound = typevar.__bound__
|
||
|
constraints = typevar.__constraints__
|
||
|
default = getattr(typevar, '__default__', None)
|
||
|
|
||
|
if (bound is not None) + (len(constraints) != 0) + (default is not None) > 1:
|
||
|
raise NotImplementedError(
|
||
|
'Pydantic does not support mixing more than one of TypeVar bounds, constraints and defaults'
|
||
|
)
|
||
|
|
||
|
if default is not None:
|
||
|
return self.generate_schema(default)
|
||
|
elif constraints:
|
||
|
return self._union_schema(typing.Union[constraints]) # type: ignore
|
||
|
elif bound:
|
||
|
schema = self.generate_schema(bound)
|
||
|
schema['serialization'] = core_schema.wrap_serializer_function_ser_schema(
|
||
|
lambda x, h: h(x), schema=core_schema.any_schema()
|
||
|
)
|
||
|
return schema
|
||
|
else:
|
||
|
return core_schema.any_schema()
|
||
|
|
||
|
def _computed_field_schema(
|
||
|
self,
|
||
|
d: Decorator[ComputedFieldInfo],
|
||
|
field_serializers: dict[str, Decorator[FieldSerializerDecoratorInfo]],
|
||
|
) -> core_schema.ComputedField:
|
||
|
try:
|
||
|
return_type = _decorators.get_function_return_type(d.func, d.info.return_type, self._types_namespace)
|
||
|
except NameError as e:
|
||
|
raise PydanticUndefinedAnnotation.from_name_error(e) from e
|
||
|
if return_type is PydanticUndefined:
|
||
|
raise PydanticUserError(
|
||
|
'Computed field is missing return type annotation or specifying `return_type`'
|
||
|
' to the `@computed_field` decorator (e.g. `@computed_field(return_type=int|str)`)',
|
||
|
code='model-field-missing-annotation',
|
||
|
)
|
||
|
|
||
|
return_type = replace_types(return_type, self._typevars_map)
|
||
|
# Create a new ComputedFieldInfo so that different type parametrizations of the same
|
||
|
# generic model's computed field can have different return types.
|
||
|
d.info = dataclasses.replace(d.info, return_type=return_type)
|
||
|
return_type_schema = self.generate_schema(return_type)
|
||
|
# Apply serializers to computed field if there exist
|
||
|
return_type_schema = self._apply_field_serializers(
|
||
|
return_type_schema,
|
||
|
filter_field_decorator_info_by_field(field_serializers.values(), d.cls_var_name),
|
||
|
computed_field=True,
|
||
|
)
|
||
|
|
||
|
alias_generator = self._config_wrapper.alias_generator
|
||
|
if alias_generator is not None:
|
||
|
self._apply_alias_generator_to_computed_field_info(
|
||
|
alias_generator=alias_generator, computed_field_info=d.info, computed_field_name=d.cls_var_name
|
||
|
)
|
||
|
|
||
|
def set_computed_field_metadata(schema: CoreSchemaOrField, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
|
||
|
json_schema = handler(schema)
|
||
|
|
||
|
json_schema['readOnly'] = True
|
||
|
|
||
|
title = d.info.title
|
||
|
if title is not None:
|
||
|
json_schema['title'] = title
|
||
|
|
||
|
description = d.info.description
|
||
|
if description is not None:
|
||
|
json_schema['description'] = description
|
||
|
|
||
|
if d.info.deprecated or d.info.deprecated == '':
|
||
|
json_schema['deprecated'] = True
|
||
|
|
||
|
examples = d.info.examples
|
||
|
if examples is not None:
|
||
|
json_schema['examples'] = to_jsonable_python(examples)
|
||
|
|
||
|
json_schema_extra = d.info.json_schema_extra
|
||
|
if json_schema_extra is not None:
|
||
|
add_json_schema_extra(json_schema, json_schema_extra)
|
||
|
|
||
|
return json_schema
|
||
|
|
||
|
metadata = build_metadata_dict(js_annotation_functions=[set_computed_field_metadata])
|
||
|
return core_schema.computed_field(
|
||
|
d.cls_var_name, return_schema=return_type_schema, alias=d.info.alias, metadata=metadata
|
||
|
)
|
||
|
|
||
|
def _annotated_schema(self, annotated_type: Any) -> core_schema.CoreSchema:
|
||
|
"""Generate schema for an Annotated type, e.g. `Annotated[int, Field(...)]` or `Annotated[int, Gt(0)]`."""
|
||
|
from ..fields import FieldInfo
|
||
|
|
||
|
source_type, *annotations = self._get_args_resolving_forward_refs(
|
||
|
annotated_type,
|
||
|
required=True,
|
||
|
)
|
||
|
schema = self._apply_annotations(source_type, annotations)
|
||
|
# put the default validator last so that TypeAdapter.get_default_value() works
|
||
|
# even if there are function validators involved
|
||
|
for annotation in annotations:
|
||
|
if isinstance(annotation, FieldInfo):
|
||
|
schema = wrap_default(annotation, schema)
|
||
|
return schema
|
||
|
|
||
|
def _get_prepare_pydantic_annotations_for_known_type(
|
||
|
self, obj: Any, annotations: tuple[Any, ...]
|
||
|
) -> tuple[Any, list[Any]] | None:
|
||
|
from ._std_types_schema import PREPARE_METHODS
|
||
|
|
||
|
# Check for hashability
|
||
|
try:
|
||
|
hash(obj)
|
||
|
except TypeError:
|
||
|
# obj is definitely not a known type if this fails
|
||
|
return None
|
||
|
|
||
|
for gen in PREPARE_METHODS:
|
||
|
res = gen(obj, annotations, self._config_wrapper.config_dict)
|
||
|
if res is not None:
|
||
|
return res
|
||
|
|
||
|
return None
|
||
|
|
||
|
def _apply_annotations(
|
||
|
self,
|
||
|
source_type: Any,
|
||
|
annotations: list[Any],
|
||
|
transform_inner_schema: Callable[[CoreSchema], CoreSchema] = lambda x: x,
|
||
|
) -> CoreSchema:
|
||
|
"""Apply arguments from `Annotated` or from `FieldInfo` to a schema.
|
||
|
|
||
|
This gets called by `GenerateSchema._annotated_schema` but differs from it in that it does
|
||
|
not expect `source_type` to be an `Annotated` object, it expects it to be the first argument of that
|
||
|
(in other words, `GenerateSchema._annotated_schema` just unpacks `Annotated`, this process it).
|
||
|
"""
|
||
|
annotations = list(_known_annotated_metadata.expand_grouped_metadata(annotations))
|
||
|
res = self._get_prepare_pydantic_annotations_for_known_type(source_type, tuple(annotations))
|
||
|
if res is not None:
|
||
|
source_type, annotations = res
|
||
|
|
||
|
pydantic_js_annotation_functions: list[GetJsonSchemaFunction] = []
|
||
|
|
||
|
def inner_handler(obj: Any) -> CoreSchema:
|
||
|
from_property = self._generate_schema_from_property(obj, obj)
|
||
|
if from_property is None:
|
||
|
schema = self._generate_schema_inner(obj)
|
||
|
else:
|
||
|
schema = from_property
|
||
|
metadata_js_function = _extract_get_pydantic_json_schema(obj, schema)
|
||
|
if metadata_js_function is not None:
|
||
|
metadata_schema = resolve_original_schema(schema, self.defs.definitions)
|
||
|
if metadata_schema is not None:
|
||
|
self._add_js_function(metadata_schema, metadata_js_function)
|
||
|
return transform_inner_schema(schema)
|
||
|
|
||
|
get_inner_schema = CallbackGetCoreSchemaHandler(inner_handler, self)
|
||
|
|
||
|
for annotation in annotations:
|
||
|
if annotation is None:
|
||
|
continue
|
||
|
get_inner_schema = self._get_wrapped_inner_schema(
|
||
|
get_inner_schema, annotation, pydantic_js_annotation_functions
|
||
|
)
|
||
|
|
||
|
schema = get_inner_schema(source_type)
|
||
|
if pydantic_js_annotation_functions:
|
||
|
metadata = CoreMetadataHandler(schema).metadata
|
||
|
metadata.setdefault('pydantic_js_annotation_functions', []).extend(pydantic_js_annotation_functions)
|
||
|
return _add_custom_serialization_from_json_encoders(self._config_wrapper.json_encoders, source_type, schema)
|
||
|
|
||
|
def _apply_single_annotation(self, schema: core_schema.CoreSchema, metadata: Any) -> core_schema.CoreSchema:
|
||
|
from ..fields import FieldInfo
|
||
|
|
||
|
if isinstance(metadata, FieldInfo):
|
||
|
for field_metadata in metadata.metadata:
|
||
|
schema = self._apply_single_annotation(schema, field_metadata)
|
||
|
|
||
|
if metadata.discriminator is not None:
|
||
|
schema = self._apply_discriminator_to_union(schema, metadata.discriminator)
|
||
|
return schema
|
||
|
|
||
|
if schema['type'] == 'nullable':
|
||
|
# for nullable schemas, metadata is automatically applied to the inner schema
|
||
|
inner = schema.get('schema', core_schema.any_schema())
|
||
|
inner = self._apply_single_annotation(inner, metadata)
|
||
|
if inner:
|
||
|
schema['schema'] = inner
|
||
|
return schema
|
||
|
|
||
|
original_schema = schema
|
||
|
ref = schema.get('ref', None)
|
||
|
if ref is not None:
|
||
|
schema = schema.copy()
|
||
|
new_ref = ref + f'_{repr(metadata)}'
|
||
|
if new_ref in self.defs.definitions:
|
||
|
return self.defs.definitions[new_ref]
|
||
|
schema['ref'] = new_ref # type: ignore
|
||
|
elif schema['type'] == 'definition-ref':
|
||
|
ref = schema['schema_ref']
|
||
|
if ref in self.defs.definitions:
|
||
|
schema = self.defs.definitions[ref].copy()
|
||
|
new_ref = ref + f'_{repr(metadata)}'
|
||
|
if new_ref in self.defs.definitions:
|
||
|
return self.defs.definitions[new_ref]
|
||
|
schema['ref'] = new_ref # type: ignore
|
||
|
|
||
|
maybe_updated_schema = _known_annotated_metadata.apply_known_metadata(metadata, schema.copy())
|
||
|
|
||
|
if maybe_updated_schema is not None:
|
||
|
return maybe_updated_schema
|
||
|
return original_schema
|
||
|
|
||
|
def _apply_single_annotation_json_schema(
|
||
|
self, schema: core_schema.CoreSchema, metadata: Any
|
||
|
) -> core_schema.CoreSchema:
|
||
|
from ..fields import FieldInfo
|
||
|
|
||
|
if isinstance(metadata, FieldInfo):
|
||
|
for field_metadata in metadata.metadata:
|
||
|
schema = self._apply_single_annotation_json_schema(schema, field_metadata)
|
||
|
json_schema_update: JsonSchemaValue = {}
|
||
|
if metadata.title:
|
||
|
json_schema_update['title'] = metadata.title
|
||
|
if metadata.description:
|
||
|
json_schema_update['description'] = metadata.description
|
||
|
if metadata.examples:
|
||
|
json_schema_update['examples'] = to_jsonable_python(metadata.examples)
|
||
|
|
||
|
json_schema_extra = metadata.json_schema_extra
|
||
|
if json_schema_update or json_schema_extra:
|
||
|
CoreMetadataHandler(schema).metadata.setdefault('pydantic_js_annotation_functions', []).append(
|
||
|
get_json_schema_update_func(json_schema_update, json_schema_extra)
|
||
|
)
|
||
|
return schema
|
||
|
|
||
|
def _get_wrapped_inner_schema(
|
||
|
self,
|
||
|
get_inner_schema: GetCoreSchemaHandler,
|
||
|
annotation: Any,
|
||
|
pydantic_js_annotation_functions: list[GetJsonSchemaFunction],
|
||
|
) -> CallbackGetCoreSchemaHandler:
|
||
|
metadata_get_schema: GetCoreSchemaFunction = getattr(annotation, '__get_pydantic_core_schema__', None) or (
|
||
|
lambda source, handler: handler(source)
|
||
|
)
|
||
|
|
||
|
def new_handler(source: Any) -> core_schema.CoreSchema:
|
||
|
schema = metadata_get_schema(source, get_inner_schema)
|
||
|
schema = self._apply_single_annotation(schema, annotation)
|
||
|
schema = self._apply_single_annotation_json_schema(schema, annotation)
|
||
|
|
||
|
metadata_js_function = _extract_get_pydantic_json_schema(annotation, schema)
|
||
|
if metadata_js_function is not None:
|
||
|
pydantic_js_annotation_functions.append(metadata_js_function)
|
||
|
return schema
|
||
|
|
||
|
return CallbackGetCoreSchemaHandler(new_handler, self)
|
||
|
|
||
|
def _apply_field_serializers(
|
||
|
self,
|
||
|
schema: core_schema.CoreSchema,
|
||
|
serializers: list[Decorator[FieldSerializerDecoratorInfo]],
|
||
|
computed_field: bool = False,
|
||
|
) -> core_schema.CoreSchema:
|
||
|
"""Apply field serializers to a schema."""
|
||
|
if serializers:
|
||
|
schema = copy(schema)
|
||
|
if schema['type'] == 'definitions':
|
||
|
inner_schema = schema['schema']
|
||
|
schema['schema'] = self._apply_field_serializers(inner_schema, serializers)
|
||
|
return schema
|
||
|
else:
|
||
|
ref = typing.cast('str|None', schema.get('ref', None))
|
||
|
if ref is not None:
|
||
|
schema = core_schema.definition_reference_schema(ref)
|
||
|
|
||
|
# use the last serializer to make it easy to override a serializer set on a parent model
|
||
|
serializer = serializers[-1]
|
||
|
is_field_serializer, info_arg = inspect_field_serializer(
|
||
|
serializer.func, serializer.info.mode, computed_field=computed_field
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
return_type = _decorators.get_function_return_type(
|
||
|
serializer.func, serializer.info.return_type, self._types_namespace
|
||
|
)
|
||
|
except NameError as e:
|
||
|
raise PydanticUndefinedAnnotation.from_name_error(e) from e
|
||
|
|
||
|
if return_type is PydanticUndefined:
|
||
|
return_schema = None
|
||
|
else:
|
||
|
return_schema = self.generate_schema(return_type)
|
||
|
|
||
|
if serializer.info.mode == 'wrap':
|
||
|
schema['serialization'] = core_schema.wrap_serializer_function_ser_schema(
|
||
|
serializer.func,
|
||
|
is_field_serializer=is_field_serializer,
|
||
|
info_arg=info_arg,
|
||
|
return_schema=return_schema,
|
||
|
when_used=serializer.info.when_used,
|
||
|
)
|
||
|
else:
|
||
|
assert serializer.info.mode == 'plain'
|
||
|
schema['serialization'] = core_schema.plain_serializer_function_ser_schema(
|
||
|
serializer.func,
|
||
|
is_field_serializer=is_field_serializer,
|
||
|
info_arg=info_arg,
|
||
|
return_schema=return_schema,
|
||
|
when_used=serializer.info.when_used,
|
||
|
)
|
||
|
return schema
|
||
|
|
||
|
def _apply_model_serializers(
|
||
|
self, schema: core_schema.CoreSchema, serializers: Iterable[Decorator[ModelSerializerDecoratorInfo]]
|
||
|
) -> core_schema.CoreSchema:
|
||
|
"""Apply model serializers to a schema."""
|
||
|
ref: str | None = schema.pop('ref', None) # type: ignore
|
||
|
if serializers:
|
||
|
serializer = list(serializers)[-1]
|
||
|
info_arg = inspect_model_serializer(serializer.func, serializer.info.mode)
|
||
|
|
||
|
try:
|
||
|
return_type = _decorators.get_function_return_type(
|
||
|
serializer.func, serializer.info.return_type, self._types_namespace
|
||
|
)
|
||
|
except NameError as e:
|
||
|
raise PydanticUndefinedAnnotation.from_name_error(e) from e
|
||
|
if return_type is PydanticUndefined:
|
||
|
return_schema = None
|
||
|
else:
|
||
|
return_schema = self.generate_schema(return_type)
|
||
|
|
||
|
if serializer.info.mode == 'wrap':
|
||
|
ser_schema: core_schema.SerSchema = core_schema.wrap_serializer_function_ser_schema(
|
||
|
serializer.func,
|
||
|
info_arg=info_arg,
|
||
|
return_schema=return_schema,
|
||
|
when_used=serializer.info.when_used,
|
||
|
)
|
||
|
else:
|
||
|
# plain
|
||
|
ser_schema = core_schema.plain_serializer_function_ser_schema(
|
||
|
serializer.func,
|
||
|
info_arg=info_arg,
|
||
|
return_schema=return_schema,
|
||
|
when_used=serializer.info.when_used,
|
||
|
)
|
||
|
schema['serialization'] = ser_schema
|
||
|
if ref:
|
||
|
schema['ref'] = ref # type: ignore
|
||
|
return schema
|
||
|
|
||
|
|
||
|
_VALIDATOR_F_MATCH: Mapping[
|
||
|
tuple[FieldValidatorModes, Literal['no-info', 'with-info']],
|
||
|
Callable[[Callable[..., Any], core_schema.CoreSchema, str | None], core_schema.CoreSchema],
|
||
|
] = {
|
||
|
('before', 'no-info'): lambda f, schema, _: core_schema.no_info_before_validator_function(f, schema),
|
||
|
('after', 'no-info'): lambda f, schema, _: core_schema.no_info_after_validator_function(f, schema),
|
||
|
('plain', 'no-info'): lambda f, _1, _2: core_schema.no_info_plain_validator_function(f),
|
||
|
('wrap', 'no-info'): lambda f, schema, _: core_schema.no_info_wrap_validator_function(f, schema),
|
||
|
('before', 'with-info'): lambda f, schema, field_name: core_schema.with_info_before_validator_function(
|
||
|
f, schema, field_name=field_name
|
||
|
),
|
||
|
('after', 'with-info'): lambda f, schema, field_name: core_schema.with_info_after_validator_function(
|
||
|
f, schema, field_name=field_name
|
||
|
),
|
||
|
('plain', 'with-info'): lambda f, _, field_name: core_schema.with_info_plain_validator_function(
|
||
|
f, field_name=field_name
|
||
|
),
|
||
|
('wrap', 'with-info'): lambda f, schema, field_name: core_schema.with_info_wrap_validator_function(
|
||
|
f, schema, field_name=field_name
|
||
|
),
|
||
|
}
|
||
|
|
||
|
|
||
|
def apply_validators(
|
||
|
schema: core_schema.CoreSchema,
|
||
|
validators: Iterable[Decorator[RootValidatorDecoratorInfo]]
|
||
|
| Iterable[Decorator[ValidatorDecoratorInfo]]
|
||
|
| Iterable[Decorator[FieldValidatorDecoratorInfo]],
|
||
|
field_name: str | None,
|
||
|
) -> core_schema.CoreSchema:
|
||
|
"""Apply validators to a schema.
|
||
|
|
||
|
Args:
|
||
|
schema: The schema to apply validators on.
|
||
|
validators: An iterable of validators.
|
||
|
field_name: The name of the field if validators are being applied to a model field.
|
||
|
|
||
|
Returns:
|
||
|
The updated schema.
|
||
|
"""
|
||
|
for validator in validators:
|
||
|
info_arg = inspect_validator(validator.func, validator.info.mode)
|
||
|
val_type = 'with-info' if info_arg else 'no-info'
|
||
|
|
||
|
schema = _VALIDATOR_F_MATCH[(validator.info.mode, val_type)](validator.func, schema, field_name)
|
||
|
return schema
|
||
|
|
||
|
|
||
|
def _validators_require_validate_default(validators: Iterable[Decorator[ValidatorDecoratorInfo]]) -> bool:
|
||
|
"""In v1, if any of the validators for a field had `always=True`, the default value would be validated.
|
||
|
|
||
|
This serves as an auxiliary function for re-implementing that logic, by looping over a provided
|
||
|
collection of (v1-style) ValidatorDecoratorInfo's and checking if any of them have `always=True`.
|
||
|
|
||
|
We should be able to drop this function and the associated logic calling it once we drop support
|
||
|
for v1-style validator decorators. (Or we can extend it and keep it if we add something equivalent
|
||
|
to the v1-validator `always` kwarg to `field_validator`.)
|
||
|
"""
|
||
|
for validator in validators:
|
||
|
if validator.info.always:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def apply_model_validators(
|
||
|
schema: core_schema.CoreSchema,
|
||
|
validators: Iterable[Decorator[ModelValidatorDecoratorInfo]],
|
||
|
mode: Literal['inner', 'outer', 'all'],
|
||
|
) -> core_schema.CoreSchema:
|
||
|
"""Apply model validators to a schema.
|
||
|
|
||
|
If mode == 'inner', only "before" validators are applied
|
||
|
If mode == 'outer', validators other than "before" are applied
|
||
|
If mode == 'all', all validators are applied
|
||
|
|
||
|
Args:
|
||
|
schema: The schema to apply validators on.
|
||
|
validators: An iterable of validators.
|
||
|
mode: The validator mode.
|
||
|
|
||
|
Returns:
|
||
|
The updated schema.
|
||
|
"""
|
||
|
ref: str | None = schema.pop('ref', None) # type: ignore
|
||
|
for validator in validators:
|
||
|
if mode == 'inner' and validator.info.mode != 'before':
|
||
|
continue
|
||
|
if mode == 'outer' and validator.info.mode == 'before':
|
||
|
continue
|
||
|
info_arg = inspect_validator(validator.func, validator.info.mode)
|
||
|
if validator.info.mode == 'wrap':
|
||
|
if info_arg:
|
||
|
schema = core_schema.with_info_wrap_validator_function(function=validator.func, schema=schema)
|
||
|
else:
|
||
|
schema = core_schema.no_info_wrap_validator_function(function=validator.func, schema=schema)
|
||
|
elif validator.info.mode == 'before':
|
||
|
if info_arg:
|
||
|
schema = core_schema.with_info_before_validator_function(function=validator.func, schema=schema)
|
||
|
else:
|
||
|
schema = core_schema.no_info_before_validator_function(function=validator.func, schema=schema)
|
||
|
else:
|
||
|
assert validator.info.mode == 'after'
|
||
|
if info_arg:
|
||
|
schema = core_schema.with_info_after_validator_function(function=validator.func, schema=schema)
|
||
|
else:
|
||
|
schema = core_schema.no_info_after_validator_function(function=validator.func, schema=schema)
|
||
|
if ref:
|
||
|
schema['ref'] = ref # type: ignore
|
||
|
return schema
|
||
|
|
||
|
|
||
|
def wrap_default(field_info: FieldInfo, schema: core_schema.CoreSchema) -> core_schema.CoreSchema:
|
||
|
"""Wrap schema with default schema if default value or `default_factory` are available.
|
||
|
|
||
|
Args:
|
||
|
field_info: The field info object.
|
||
|
schema: The schema to apply default on.
|
||
|
|
||
|
Returns:
|
||
|
Updated schema by default value or `default_factory`.
|
||
|
"""
|
||
|
if field_info.default_factory:
|
||
|
return core_schema.with_default_schema(
|
||
|
schema, default_factory=field_info.default_factory, validate_default=field_info.validate_default
|
||
|
)
|
||
|
elif field_info.default is not PydanticUndefined:
|
||
|
return core_schema.with_default_schema(
|
||
|
schema, default=field_info.default, validate_default=field_info.validate_default
|
||
|
)
|
||
|
else:
|
||
|
return schema
|
||
|
|
||
|
|
||
|
def _extract_get_pydantic_json_schema(tp: Any, schema: CoreSchema) -> GetJsonSchemaFunction | None:
|
||
|
"""Extract `__get_pydantic_json_schema__` from a type, handling the deprecated `__modify_schema__`."""
|
||
|
js_modify_function = getattr(tp, '__get_pydantic_json_schema__', None)
|
||
|
|
||
|
if hasattr(tp, '__modify_schema__'):
|
||
|
from pydantic import BaseModel # circular reference
|
||
|
|
||
|
has_custom_v2_modify_js_func = (
|
||
|
js_modify_function is not None
|
||
|
and BaseModel.__get_pydantic_json_schema__.__func__ # type: ignore
|
||
|
not in (js_modify_function, getattr(js_modify_function, '__func__', None))
|
||
|
)
|
||
|
|
||
|
if not has_custom_v2_modify_js_func:
|
||
|
cls_name = getattr(tp, '__name__', None)
|
||
|
raise PydanticUserError(
|
||
|
f'The `__modify_schema__` method is not supported in Pydantic v2. '
|
||
|
f'Use `__get_pydantic_json_schema__` instead{f" in class `{cls_name}`" if cls_name else ""}.',
|
||
|
code='custom-json-schema',
|
||
|
)
|
||
|
|
||
|
# handle GenericAlias' but ignore Annotated which "lies" about its origin (in this case it would be `int`)
|
||
|
if hasattr(tp, '__origin__') and not isinstance(tp, type(Annotated[int, 'placeholder'])):
|
||
|
return _extract_get_pydantic_json_schema(tp.__origin__, schema)
|
||
|
|
||
|
if js_modify_function is None:
|
||
|
return None
|
||
|
|
||
|
return js_modify_function
|
||
|
|
||
|
|
||
|
def get_json_schema_update_func(
|
||
|
json_schema_update: JsonSchemaValue, json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None
|
||
|
) -> GetJsonSchemaFunction:
|
||
|
def json_schema_update_func(
|
||
|
core_schema_or_field: CoreSchemaOrField, handler: GetJsonSchemaHandler
|
||
|
) -> JsonSchemaValue:
|
||
|
json_schema = {**handler(core_schema_or_field), **json_schema_update}
|
||
|
add_json_schema_extra(json_schema, json_schema_extra)
|
||
|
return json_schema
|
||
|
|
||
|
return json_schema_update_func
|
||
|
|
||
|
|
||
|
def add_json_schema_extra(
|
||
|
json_schema: JsonSchemaValue, json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None
|
||
|
):
|
||
|
if isinstance(json_schema_extra, dict):
|
||
|
json_schema.update(to_jsonable_python(json_schema_extra))
|
||
|
elif callable(json_schema_extra):
|
||
|
json_schema_extra(json_schema)
|
||
|
|
||
|
|
||
|
class _CommonField(TypedDict):
|
||
|
schema: core_schema.CoreSchema
|
||
|
validation_alias: str | list[str | int] | list[list[str | int]] | None
|
||
|
serialization_alias: str | None
|
||
|
serialization_exclude: bool | None
|
||
|
frozen: bool | None
|
||
|
metadata: dict[str, Any]
|
||
|
|
||
|
|
||
|
def _common_field(
|
||
|
schema: core_schema.CoreSchema,
|
||
|
*,
|
||
|
validation_alias: str | list[str | int] | list[list[str | int]] | None = None,
|
||
|
serialization_alias: str | None = None,
|
||
|
serialization_exclude: bool | None = None,
|
||
|
frozen: bool | None = None,
|
||
|
metadata: Any = None,
|
||
|
) -> _CommonField:
|
||
|
return {
|
||
|
'schema': schema,
|
||
|
'validation_alias': validation_alias,
|
||
|
'serialization_alias': serialization_alias,
|
||
|
'serialization_exclude': serialization_exclude,
|
||
|
'frozen': frozen,
|
||
|
'metadata': metadata,
|
||
|
}
|
||
|
|
||
|
|
||
|
class _Definitions:
|
||
|
"""Keeps track of references and definitions."""
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
self.seen: set[str] = set()
|
||
|
self.definitions: dict[str, core_schema.CoreSchema] = {}
|
||
|
|
||
|
@contextmanager
|
||
|
def get_schema_or_ref(self, tp: Any) -> Iterator[tuple[str, None] | tuple[str, CoreSchema]]:
|
||
|
"""Get a definition for `tp` if one exists.
|
||
|
|
||
|
If a definition exists, a tuple of `(ref_string, CoreSchema)` is returned.
|
||
|
If no definition exists yet, a tuple of `(ref_string, None)` is returned.
|
||
|
|
||
|
Note that the returned `CoreSchema` will always be a `DefinitionReferenceSchema`,
|
||
|
not the actual definition itself.
|
||
|
|
||
|
This should be called for any type that can be identified by reference.
|
||
|
This includes any recursive types.
|
||
|
|
||
|
At present the following types can be named/recursive:
|
||
|
|
||
|
- BaseModel
|
||
|
- Dataclasses
|
||
|
- TypedDict
|
||
|
- TypeAliasType
|
||
|
"""
|
||
|
ref = get_type_ref(tp)
|
||
|
# return the reference if we're either (1) in a cycle or (2) it was already defined
|
||
|
if ref in self.seen or ref in self.definitions:
|
||
|
yield (ref, core_schema.definition_reference_schema(ref))
|
||
|
else:
|
||
|
self.seen.add(ref)
|
||
|
try:
|
||
|
yield (ref, None)
|
||
|
finally:
|
||
|
self.seen.discard(ref)
|
||
|
|
||
|
|
||
|
def resolve_original_schema(schema: CoreSchema, definitions: dict[str, CoreSchema]) -> CoreSchema | None:
|
||
|
if schema['type'] == 'definition-ref':
|
||
|
return definitions.get(schema['schema_ref'], None)
|
||
|
elif schema['type'] == 'definitions':
|
||
|
return schema['schema']
|
||
|
else:
|
||
|
return schema
|
||
|
|
||
|
|
||
|
class _FieldNameStack:
|
||
|
__slots__ = ('_stack',)
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
self._stack: list[str] = []
|
||
|
|
||
|
@contextmanager
|
||
|
def push(self, field_name: str) -> Iterator[None]:
|
||
|
self._stack.append(field_name)
|
||
|
yield
|
||
|
self._stack.pop()
|
||
|
|
||
|
def get(self) -> str | None:
|
||
|
if self._stack:
|
||
|
return self._stack[-1]
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
|
||
|
class _ModelTypeStack:
|
||
|
__slots__ = ('_stack',)
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
self._stack: list[type] = []
|
||
|
|
||
|
@contextmanager
|
||
|
def push(self, type_obj: type) -> Iterator[None]:
|
||
|
self._stack.append(type_obj)
|
||
|
yield
|
||
|
self._stack.pop()
|
||
|
|
||
|
def get(self) -> type | None:
|
||
|
if self._stack:
|
||
|
return self._stack[-1]
|
||
|
else:
|
||
|
return None
|