ai-content-maker/.venv/Lib/site-packages/scipy/stats/_censored_data.py

460 lines
18 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
def _validate_1d(a, name, allow_inf=False):
if np.ndim(a) != 1:
raise ValueError(f'`{name}` must be a one-dimensional sequence.')
if np.isnan(a).any():
raise ValueError(f'`{name}` must not contain nan.')
if not allow_inf and np.isinf(a).any():
raise ValueError(f'`{name}` must contain only finite values.')
def _validate_interval(interval):
interval = np.asarray(interval)
if interval.shape == (0,):
# The input was a sequence with length 0.
interval = interval.reshape((0, 2))
if interval.ndim != 2 or interval.shape[-1] != 2:
raise ValueError('`interval` must be a two-dimensional array with '
'shape (m, 2), where m is the number of '
'interval-censored values, but got shape '
f'{interval.shape}')
if np.isnan(interval).any():
raise ValueError('`interval` must not contain nan.')
if np.isinf(interval).all(axis=1).any():
raise ValueError('In each row in `interval`, both values must not'
' be infinite.')
if (interval[:, 0] > interval[:, 1]).any():
raise ValueError('In each row of `interval`, the left value must not'
' exceed the right value.')
uncensored_mask = interval[:, 0] == interval[:, 1]
left_mask = np.isinf(interval[:, 0])
right_mask = np.isinf(interval[:, 1])
interval_mask = np.isfinite(interval).all(axis=1) & ~uncensored_mask
uncensored2 = interval[uncensored_mask, 0]
left2 = interval[left_mask, 1]
right2 = interval[right_mask, 0]
interval2 = interval[interval_mask]
return uncensored2, left2, right2, interval2
def _validate_x_censored(x, censored):
x = np.asarray(x)
if x.ndim != 1:
raise ValueError('`x` must be one-dimensional.')
censored = np.asarray(censored)
if censored.ndim != 1:
raise ValueError('`censored` must be one-dimensional.')
if (~np.isfinite(x)).any():
raise ValueError('`x` must not contain nan or inf.')
if censored.size != x.size:
raise ValueError('`x` and `censored` must have the same length.')
return x, censored.astype(bool)
class CensoredData:
"""
Instances of this class represent censored data.
Instances may be passed to the ``fit`` method of continuous
univariate SciPy distributions for maximum likelihood estimation.
The *only* method of the univariate continuous distributions that
understands `CensoredData` is the ``fit`` method. An instance of
`CensoredData` can not be passed to methods such as ``pdf`` and
``cdf``.
An observation is said to be *censored* when the precise value is unknown,
but it has a known upper and/or lower bound. The conventional terminology
is:
* left-censored: an observation is below a certain value but it is
unknown by how much.
* right-censored: an observation is above a certain value but it is
unknown by how much.
* interval-censored: an observation lies somewhere on an interval between
two values.
Left-, right-, and interval-censored data can be represented by
`CensoredData`.
For convenience, the class methods ``left_censored`` and
``right_censored`` are provided to create a `CensoredData`
instance from a single one-dimensional array of measurements
and a corresponding boolean array to indicate which measurements
are censored. The class method ``interval_censored`` accepts two
one-dimensional arrays that hold the lower and upper bounds of the
intervals.
Parameters
----------
uncensored : array_like, 1D
Uncensored observations.
left : array_like, 1D
Left-censored observations.
right : array_like, 1D
Right-censored observations.
interval : array_like, 2D, with shape (m, 2)
Interval-censored observations. Each row ``interval[k, :]``
represents the interval for the kth interval-censored observation.
Notes
-----
In the input array `interval`, the lower bound of the interval may
be ``-inf``, and the upper bound may be ``inf``, but at least one must be
finite. When the lower bound is ``-inf``, the row represents a left-
censored observation, and when the upper bound is ``inf``, the row
represents a right-censored observation. If the length of an interval
is 0 (i.e. ``interval[k, 0] == interval[k, 1]``, the observation is
treated as uncensored. So one can represent all the types of censored
and uncensored data in ``interval``, but it is generally more convenient
to use `uncensored`, `left` and `right` for uncensored, left-censored and
right-censored observations, respectively.
Examples
--------
In the most general case, a censored data set may contain values that
are left-censored, right-censored, interval-censored, and uncensored.
For example, here we create a data set with five observations. Two
are uncensored (values 1 and 1.5), one is a left-censored observation
of 0, one is a right-censored observation of 10 and one is
interval-censored in the interval [2, 3].
>>> import numpy as np
>>> from scipy.stats import CensoredData
>>> data = CensoredData(uncensored=[1, 1.5], left=[0], right=[10],
... interval=[[2, 3]])
>>> print(data)
CensoredData(5 values: 2 not censored, 1 left-censored,
1 right-censored, 1 interval-censored)
Equivalently,
>>> data = CensoredData(interval=[[1, 1],
... [1.5, 1.5],
... [-np.inf, 0],
... [10, np.inf],
... [2, 3]])
>>> print(data)
CensoredData(5 values: 2 not censored, 1 left-censored,
1 right-censored, 1 interval-censored)
A common case is to have a mix of uncensored observations and censored
observations that are all right-censored (or all left-censored). For
example, consider an experiment in which six devices are started at
various times and left running until they fail. Assume that time is
measured in hours, and the experiment is stopped after 30 hours, even
if all the devices have not failed by that time. We might end up with
data such as this::
Device Start-time Fail-time Time-to-failure
1 0 13 13
2 2 24 22
3 5 22 17
4 8 23 15
5 10 *** >20
6 12 *** >18
Two of the devices had not failed when the experiment was stopped;
the observations of the time-to-failure for these two devices are
right-censored. We can represent this data with
>>> data = CensoredData(uncensored=[13, 22, 17, 15], right=[20, 18])
>>> print(data)
CensoredData(6 values: 4 not censored, 2 right-censored)
Alternatively, we can use the method `CensoredData.right_censored` to
create a representation of this data. The time-to-failure observations
are put the list ``ttf``. The ``censored`` list indicates which values
in ``ttf`` are censored.
>>> ttf = [13, 22, 17, 15, 20, 18]
>>> censored = [False, False, False, False, True, True]
Pass these lists to `CensoredData.right_censored` to create an
instance of `CensoredData`.
>>> data = CensoredData.right_censored(ttf, censored)
>>> print(data)
CensoredData(6 values: 4 not censored, 2 right-censored)
If the input data is interval censored and already stored in two
arrays, one holding the low end of the intervals and another
holding the high ends, the class method ``interval_censored`` can
be used to create the `CensoredData` instance.
This example creates an instance with four interval-censored values.
The intervals are [10, 11], [0.5, 1], [2, 3], and [12.5, 13.5].
>>> a = [10, 0.5, 2, 12.5] # Low ends of the intervals
>>> b = [11, 1.0, 3, 13.5] # High ends of the intervals
>>> data = CensoredData.interval_censored(low=a, high=b)
>>> print(data)
CensoredData(4 values: 0 not censored, 4 interval-censored)
Finally, we create and censor some data from the `weibull_min`
distribution, and then fit `weibull_min` to that data. We'll assume
that the location parameter is known to be 0.
>>> from scipy.stats import weibull_min
>>> rng = np.random.default_rng()
Create the random data set.
>>> x = weibull_min.rvs(2.5, loc=0, scale=30, size=250, random_state=rng)
>>> x[x > 40] = 40 # Right-censor values greater or equal to 40.
Create the `CensoredData` instance with the `right_censored` method.
The censored values are those where the value is 40.
>>> data = CensoredData.right_censored(x, x == 40)
>>> print(data)
CensoredData(250 values: 215 not censored, 35 right-censored)
35 values have been right-censored.
Fit `weibull_min` to the censored data. We expect to shape and scale
to be approximately 2.5 and 30, respectively.
>>> weibull_min.fit(data, floc=0)
(2.3575922823897315, 0, 30.40650074451254)
"""
def __init__(self, uncensored=None, *, left=None, right=None,
interval=None):
if uncensored is None:
uncensored = []
if left is None:
left = []
if right is None:
right = []
if interval is None:
interval = np.empty((0, 2))
_validate_1d(uncensored, 'uncensored')
_validate_1d(left, 'left')
_validate_1d(right, 'right')
uncensored2, left2, right2, interval2 = _validate_interval(interval)
self._uncensored = np.concatenate((uncensored, uncensored2))
self._left = np.concatenate((left, left2))
self._right = np.concatenate((right, right2))
# Note that by construction, the private attribute _interval
# will be a 2D array that contains only finite values representing
# intervals with nonzero but finite length.
self._interval = interval2
def __repr__(self):
uncensored_str = " ".join(np.array_repr(self._uncensored).split())
left_str = " ".join(np.array_repr(self._left).split())
right_str = " ".join(np.array_repr(self._right).split())
interval_str = " ".join(np.array_repr(self._interval).split())
return (f"CensoredData(uncensored={uncensored_str}, left={left_str}, "
f"right={right_str}, interval={interval_str})")
def __str__(self):
num_nc = len(self._uncensored)
num_lc = len(self._left)
num_rc = len(self._right)
num_ic = len(self._interval)
n = num_nc + num_lc + num_rc + num_ic
parts = [f'{num_nc} not censored']
if num_lc > 0:
parts.append(f'{num_lc} left-censored')
if num_rc > 0:
parts.append(f'{num_rc} right-censored')
if num_ic > 0:
parts.append(f'{num_ic} interval-censored')
return f'CensoredData({n} values: ' + ', '.join(parts) + ')'
# This is not a complete implementation of the arithmetic operators.
# All we need is subtracting a scalar and dividing by a scalar.
def __sub__(self, other):
return CensoredData(uncensored=self._uncensored - other,
left=self._left - other,
right=self._right - other,
interval=self._interval - other)
def __truediv__(self, other):
return CensoredData(uncensored=self._uncensored / other,
left=self._left / other,
right=self._right / other,
interval=self._interval / other)
def __len__(self):
"""
The number of values (censored and not censored).
"""
return (len(self._uncensored) + len(self._left) + len(self._right)
+ len(self._interval))
def num_censored(self):
"""
Number of censored values.
"""
return len(self._left) + len(self._right) + len(self._interval)
@classmethod
def right_censored(cls, x, censored):
"""
Create a `CensoredData` instance of right-censored data.
Parameters
----------
x : array_like
`x` is the array of observed data or measurements.
`x` must be a one-dimensional sequence of finite numbers.
censored : array_like of bool
`censored` must be a one-dimensional sequence of boolean
values. If ``censored[k]`` is True, the corresponding value
in `x` is right-censored. That is, the value ``x[k]``
is the lower bound of the true (but unknown) value.
Returns
-------
data : `CensoredData`
An instance of `CensoredData` that represents the
collection of uncensored and right-censored values.
Examples
--------
>>> from scipy.stats import CensoredData
Two uncensored values (4 and 10) and two right-censored values
(24 and 25).
>>> data = CensoredData.right_censored([4, 10, 24, 25],
... [False, False, True, True])
>>> data
CensoredData(uncensored=array([ 4., 10.]),
left=array([], dtype=float64), right=array([24., 25.]),
interval=array([], shape=(0, 2), dtype=float64))
>>> print(data)
CensoredData(4 values: 2 not censored, 2 right-censored)
"""
x, censored = _validate_x_censored(x, censored)
return cls(uncensored=x[~censored], right=x[censored])
@classmethod
def left_censored(cls, x, censored):
"""
Create a `CensoredData` instance of left-censored data.
Parameters
----------
x : array_like
`x` is the array of observed data or measurements.
`x` must be a one-dimensional sequence of finite numbers.
censored : array_like of bool
`censored` must be a one-dimensional sequence of boolean
values. If ``censored[k]`` is True, the corresponding value
in `x` is left-censored. That is, the value ``x[k]``
is the upper bound of the true (but unknown) value.
Returns
-------
data : `CensoredData`
An instance of `CensoredData` that represents the
collection of uncensored and left-censored values.
Examples
--------
>>> from scipy.stats import CensoredData
Two uncensored values (0.12 and 0.033) and two left-censored values
(both 1e-3).
>>> data = CensoredData.left_censored([0.12, 0.033, 1e-3, 1e-3],
... [False, False, True, True])
>>> data
CensoredData(uncensored=array([0.12 , 0.033]),
left=array([0.001, 0.001]), right=array([], dtype=float64),
interval=array([], shape=(0, 2), dtype=float64))
>>> print(data)
CensoredData(4 values: 2 not censored, 2 left-censored)
"""
x, censored = _validate_x_censored(x, censored)
return cls(uncensored=x[~censored], left=x[censored])
@classmethod
def interval_censored(cls, low, high):
"""
Create a `CensoredData` instance of interval-censored data.
This method is useful when all the data is interval-censored, and
the low and high ends of the intervals are already stored in
separate one-dimensional arrays.
Parameters
----------
low : array_like
The one-dimensional array containing the low ends of the
intervals.
high : array_like
The one-dimensional array containing the high ends of the
intervals.
Returns
-------
data : `CensoredData`
An instance of `CensoredData` that represents the
collection of censored values.
Examples
--------
>>> import numpy as np
>>> from scipy.stats import CensoredData
``a`` and ``b`` are the low and high ends of a collection of
interval-censored values.
>>> a = [0.5, 2.0, 3.0, 5.5]
>>> b = [1.0, 2.5, 3.5, 7.0]
>>> data = CensoredData.interval_censored(low=a, high=b)
>>> print(data)
CensoredData(4 values: 0 not censored, 4 interval-censored)
"""
_validate_1d(low, 'low', allow_inf=True)
_validate_1d(high, 'high', allow_inf=True)
if len(low) != len(high):
raise ValueError('`low` and `high` must have the same length.')
interval = np.column_stack((low, high))
uncensored, left, right, interval = _validate_interval(interval)
return cls(uncensored=uncensored, left=left, right=right,
interval=interval)
def _uncensor(self):
"""
This function is used when a non-censored version of the data
is needed to create a rough estimate of the parameters of a
distribution via the method of moments or some similar method.
The data is "uncensored" by taking the given endpoints as the
data for the left- or right-censored data, and the mean for the
interval-censored data.
"""
data = np.concatenate((self._uncensored, self._left, self._right,
self._interval.mean(axis=1)))
return data
def _supported(self, a, b):
"""
Return a subset of self containing the values that are in
(or overlap with) the interval (a, b).
"""
uncensored = self._uncensored
uncensored = uncensored[(a < uncensored) & (uncensored < b)]
left = self._left
left = left[a < left]
right = self._right
right = right[right < b]
interval = self._interval
interval = interval[(a < interval[:, 1]) & (interval[:, 0] < b)]
return CensoredData(uncensored, left=left, right=right,
interval=interval)