ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/matrixcache.py

104 lines
3.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""A cache for storing small matrices in multiple formats."""
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.power import Pow
from sympy.functions.elementary.exponential import exp
from sympy.matrices.dense import Matrix
from sympy.physics.quantum.matrixutils import (
to_sympy, to_numpy, to_scipy_sparse
)
class MatrixCache:
"""A cache for small matrices in different formats.
This class takes small matrices in the standard ``sympy.Matrix`` format,
and then converts these to both ``numpy.matrix`` and
``scipy.sparse.csr_matrix`` matrices. These matrices are then stored for
future recovery.
"""
def __init__(self, dtype='complex'):
self._cache = {}
self.dtype = dtype
def cache_matrix(self, name, m):
"""Cache a matrix by its name.
Parameters
----------
name : str
A descriptive name for the matrix, like "identity2".
m : list of lists
The raw matrix data as a SymPy Matrix.
"""
try:
self._sympy_matrix(name, m)
except ImportError:
pass
try:
self._numpy_matrix(name, m)
except ImportError:
pass
try:
self._scipy_sparse_matrix(name, m)
except ImportError:
pass
def get_matrix(self, name, format):
"""Get a cached matrix by name and format.
Parameters
----------
name : str
A descriptive name for the matrix, like "identity2".
format : str
The format desired ('sympy', 'numpy', 'scipy.sparse')
"""
m = self._cache.get((name, format))
if m is not None:
return m
raise NotImplementedError(
'Matrix with name %s and format %s is not available.' %
(name, format)
)
def _store_matrix(self, name, format, m):
self._cache[(name, format)] = m
def _sympy_matrix(self, name, m):
self._store_matrix(name, 'sympy', to_sympy(m))
def _numpy_matrix(self, name, m):
m = to_numpy(m, dtype=self.dtype)
self._store_matrix(name, 'numpy', m)
def _scipy_sparse_matrix(self, name, m):
# TODO: explore different sparse formats. But sparse.kron will use
# coo in most cases, so we use that here.
m = to_scipy_sparse(m, dtype=self.dtype)
self._store_matrix(name, 'scipy.sparse', m)
sqrt2_inv = Pow(2, Rational(-1, 2), evaluate=False)
# Save the common matrices that we will need
matrix_cache = MatrixCache()
matrix_cache.cache_matrix('eye2', Matrix([[1, 0], [0, 1]]))
matrix_cache.cache_matrix('op11', Matrix([[0, 0], [0, 1]])) # |1><1|
matrix_cache.cache_matrix('op00', Matrix([[1, 0], [0, 0]])) # |0><0|
matrix_cache.cache_matrix('op10', Matrix([[0, 0], [1, 0]])) # |1><0|
matrix_cache.cache_matrix('op01', Matrix([[0, 1], [0, 0]])) # |0><1|
matrix_cache.cache_matrix('X', Matrix([[0, 1], [1, 0]]))
matrix_cache.cache_matrix('Y', Matrix([[0, -I], [I, 0]]))
matrix_cache.cache_matrix('Z', Matrix([[1, 0], [0, -1]]))
matrix_cache.cache_matrix('S', Matrix([[1, 0], [0, I]]))
matrix_cache.cache_matrix('T', Matrix([[1, 0], [0, exp(I*pi/4)]]))
matrix_cache.cache_matrix('H', sqrt2_inv*Matrix([[1, 1], [1, -1]]))
matrix_cache.cache_matrix('Hsqrt2', Matrix([[1, 1], [1, -1]]))
matrix_cache.cache_matrix(
'SWAP', Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]))
matrix_cache.cache_matrix('ZX', sqrt2_inv*Matrix([[1, 1], [1, -1]]))
matrix_cache.cache_matrix('ZY', Matrix([[I, 0], [0, -I]]))