ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/matrixcache.py

104 lines
3.5 KiB
Python

"""A cache for storing small matrices in multiple formats."""
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.power import Pow
from sympy.functions.elementary.exponential import exp
from sympy.matrices.dense import Matrix
from sympy.physics.quantum.matrixutils import (
to_sympy, to_numpy, to_scipy_sparse
)
class MatrixCache:
"""A cache for small matrices in different formats.
This class takes small matrices in the standard ``sympy.Matrix`` format,
and then converts these to both ``numpy.matrix`` and
``scipy.sparse.csr_matrix`` matrices. These matrices are then stored for
future recovery.
"""
def __init__(self, dtype='complex'):
self._cache = {}
self.dtype = dtype
def cache_matrix(self, name, m):
"""Cache a matrix by its name.
Parameters
----------
name : str
A descriptive name for the matrix, like "identity2".
m : list of lists
The raw matrix data as a SymPy Matrix.
"""
try:
self._sympy_matrix(name, m)
except ImportError:
pass
try:
self._numpy_matrix(name, m)
except ImportError:
pass
try:
self._scipy_sparse_matrix(name, m)
except ImportError:
pass
def get_matrix(self, name, format):
"""Get a cached matrix by name and format.
Parameters
----------
name : str
A descriptive name for the matrix, like "identity2".
format : str
The format desired ('sympy', 'numpy', 'scipy.sparse')
"""
m = self._cache.get((name, format))
if m is not None:
return m
raise NotImplementedError(
'Matrix with name %s and format %s is not available.' %
(name, format)
)
def _store_matrix(self, name, format, m):
self._cache[(name, format)] = m
def _sympy_matrix(self, name, m):
self._store_matrix(name, 'sympy', to_sympy(m))
def _numpy_matrix(self, name, m):
m = to_numpy(m, dtype=self.dtype)
self._store_matrix(name, 'numpy', m)
def _scipy_sparse_matrix(self, name, m):
# TODO: explore different sparse formats. But sparse.kron will use
# coo in most cases, so we use that here.
m = to_scipy_sparse(m, dtype=self.dtype)
self._store_matrix(name, 'scipy.sparse', m)
sqrt2_inv = Pow(2, Rational(-1, 2), evaluate=False)
# Save the common matrices that we will need
matrix_cache = MatrixCache()
matrix_cache.cache_matrix('eye2', Matrix([[1, 0], [0, 1]]))
matrix_cache.cache_matrix('op11', Matrix([[0, 0], [0, 1]])) # |1><1|
matrix_cache.cache_matrix('op00', Matrix([[1, 0], [0, 0]])) # |0><0|
matrix_cache.cache_matrix('op10', Matrix([[0, 0], [1, 0]])) # |1><0|
matrix_cache.cache_matrix('op01', Matrix([[0, 1], [0, 0]])) # |0><1|
matrix_cache.cache_matrix('X', Matrix([[0, 1], [1, 0]]))
matrix_cache.cache_matrix('Y', Matrix([[0, -I], [I, 0]]))
matrix_cache.cache_matrix('Z', Matrix([[1, 0], [0, -1]]))
matrix_cache.cache_matrix('S', Matrix([[1, 0], [0, I]]))
matrix_cache.cache_matrix('T', Matrix([[1, 0], [0, exp(I*pi/4)]]))
matrix_cache.cache_matrix('H', sqrt2_inv*Matrix([[1, 1], [1, -1]]))
matrix_cache.cache_matrix('Hsqrt2', Matrix([[1, 1], [1, -1]]))
matrix_cache.cache_matrix(
'SWAP', Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]))
matrix_cache.cache_matrix('ZX', sqrt2_inv*Matrix([[1, 1], [1, -1]]))
matrix_cache.cache_matrix('ZY', Matrix([[I, 0], [0, -I]]))