53 lines
1.5 KiB
Python
53 lines
1.5 KiB
Python
|
from sympy.core.numbers import Integer
|
||
|
from sympy.core.symbol import Symbol
|
||
|
from sympy.physics.quantum.qexpr import QExpr, _qsympify_sequence
|
||
|
from sympy.physics.quantum.hilbert import HilbertSpace
|
||
|
from sympy.core.containers import Tuple
|
||
|
|
||
|
x = Symbol('x')
|
||
|
y = Symbol('y')
|
||
|
|
||
|
|
||
|
def test_qexpr_new():
|
||
|
q = QExpr(0)
|
||
|
assert q.label == (0,)
|
||
|
assert q.hilbert_space == HilbertSpace()
|
||
|
assert q.is_commutative is False
|
||
|
|
||
|
q = QExpr(0, 1)
|
||
|
assert q.label == (Integer(0), Integer(1))
|
||
|
|
||
|
q = QExpr._new_rawargs(HilbertSpace(), Integer(0), Integer(1))
|
||
|
assert q.label == (Integer(0), Integer(1))
|
||
|
assert q.hilbert_space == HilbertSpace()
|
||
|
|
||
|
|
||
|
def test_qexpr_commutative():
|
||
|
q1 = QExpr(x)
|
||
|
q2 = QExpr(y)
|
||
|
assert q1.is_commutative is False
|
||
|
assert q2.is_commutative is False
|
||
|
assert q1*q2 != q2*q1
|
||
|
|
||
|
q = QExpr._new_rawargs(Integer(0), Integer(1), HilbertSpace())
|
||
|
assert q.is_commutative is False
|
||
|
|
||
|
def test_qexpr_commutative_free_symbols():
|
||
|
q1 = QExpr(x)
|
||
|
assert q1.free_symbols.pop().is_commutative is False
|
||
|
|
||
|
q2 = QExpr('q2')
|
||
|
assert q2.free_symbols.pop().is_commutative is False
|
||
|
|
||
|
def test_qexpr_subs():
|
||
|
q1 = QExpr(x, y)
|
||
|
assert q1.subs(x, y) == QExpr(y, y)
|
||
|
assert q1.subs({x: 1, y: 2}) == QExpr(1, 2)
|
||
|
|
||
|
|
||
|
def test_qsympify():
|
||
|
assert _qsympify_sequence([[1, 2], [1, 3]]) == (Tuple(1, 2), Tuple(1, 3))
|
||
|
assert _qsympify_sequence(([1, 2, [3, 4, [2, ]], 1], 3)) == \
|
||
|
(Tuple(1, 2, Tuple(3, 4, Tuple(2,)), 1), 3)
|
||
|
assert _qsympify_sequence((1,)) == (1,)
|