ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/tests/test_qexpr.py

53 lines
1.5 KiB
Python

from sympy.core.numbers import Integer
from sympy.core.symbol import Symbol
from sympy.physics.quantum.qexpr import QExpr, _qsympify_sequence
from sympy.physics.quantum.hilbert import HilbertSpace
from sympy.core.containers import Tuple
x = Symbol('x')
y = Symbol('y')
def test_qexpr_new():
q = QExpr(0)
assert q.label == (0,)
assert q.hilbert_space == HilbertSpace()
assert q.is_commutative is False
q = QExpr(0, 1)
assert q.label == (Integer(0), Integer(1))
q = QExpr._new_rawargs(HilbertSpace(), Integer(0), Integer(1))
assert q.label == (Integer(0), Integer(1))
assert q.hilbert_space == HilbertSpace()
def test_qexpr_commutative():
q1 = QExpr(x)
q2 = QExpr(y)
assert q1.is_commutative is False
assert q2.is_commutative is False
assert q1*q2 != q2*q1
q = QExpr._new_rawargs(Integer(0), Integer(1), HilbertSpace())
assert q.is_commutative is False
def test_qexpr_commutative_free_symbols():
q1 = QExpr(x)
assert q1.free_symbols.pop().is_commutative is False
q2 = QExpr('q2')
assert q2.free_symbols.pop().is_commutative is False
def test_qexpr_subs():
q1 = QExpr(x, y)
assert q1.subs(x, y) == QExpr(y, y)
assert q1.subs({x: 1, y: 2}) == QExpr(1, 2)
def test_qsympify():
assert _qsympify_sequence([[1, 2], [1, 3]]) == (Tuple(1, 2), Tuple(1, 3))
assert _qsympify_sequence(([1, 2, [3, 4, [2, ]], 1], 3)) == \
(Tuple(1, 2, Tuple(3, 4, Tuple(2,)), 1), 3)
assert _qsympify_sequence((1,)) == (1,)