105 lines
3.9 KiB
Python
105 lines
3.9 KiB
Python
|
from typing import Dict, List, Optional
|
||
|
|
||
|
import torch
|
||
|
import torch.optim._functional as F
|
||
|
|
||
|
from torch import Tensor
|
||
|
|
||
|
__all__: List[str] = []
|
||
|
|
||
|
# Define a TorchScript compatible Functional Adagrad Optimizer
|
||
|
# where we use these optimizer in a functional way.
|
||
|
# Instead of using the `param.grad` when updating parameters,
|
||
|
# we explicitly let the user pass gradients to the `step` function
|
||
|
# this is so that we could separate the gradients and parameters
|
||
|
# and allow multithreaded trainer to update the parameters
|
||
|
# without data traces on accumulating to the same .grad.
|
||
|
# NOTE: This should be only used by distributed optimizer internals
|
||
|
# and not meant to expose to the user.
|
||
|
@torch.jit.script
|
||
|
class _FunctionalAdagrad:
|
||
|
def __init__(
|
||
|
self,
|
||
|
params: List[Tensor],
|
||
|
lr: float = 1e-2,
|
||
|
lr_decay: float = 0.0,
|
||
|
weight_decay: float = 0.0,
|
||
|
initial_accumulator_value: float = 0.0,
|
||
|
warmup_lr_multiplier: float = 1.0,
|
||
|
warmup_num_iters: float = 0.0,
|
||
|
eps: float = 1e-10,
|
||
|
coalesce_grad: bool = True,
|
||
|
foreach: bool = False,
|
||
|
maximize: bool = False,
|
||
|
_allow_empty_param_list: bool = False,
|
||
|
):
|
||
|
self.defaults = {
|
||
|
"lr": lr,
|
||
|
"lr_decay": lr_decay,
|
||
|
"eps": eps,
|
||
|
"weight_decay": weight_decay,
|
||
|
"initial_accumulator_value": initial_accumulator_value,
|
||
|
"warmup_lr_multiplier": warmup_lr_multiplier,
|
||
|
"warmup_num_iters": warmup_num_iters,
|
||
|
}
|
||
|
self.coalesce_grad = coalesce_grad
|
||
|
self.foreach = foreach
|
||
|
self.maximize = maximize
|
||
|
self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
|
||
|
|
||
|
if len(params) == 0 and not _allow_empty_param_list:
|
||
|
raise ValueError("optimizer got an empty parameter list")
|
||
|
|
||
|
# NOTE: we only have one param_group and don't allow user to add additional
|
||
|
# param group as it's not a common use case.
|
||
|
self.param_group = {"params": params}
|
||
|
|
||
|
# TODO: no union or any types in TorchScript, make step a scalar tensor instead
|
||
|
# This is also needed by if we want to share_memory on the step across processes
|
||
|
for p in self.param_group["params"]:
|
||
|
self.state[p] = {
|
||
|
"sum": torch.full_like(p.data, initial_accumulator_value),
|
||
|
"step": torch.tensor(0.0),
|
||
|
}
|
||
|
|
||
|
def step(self, gradients: List[Optional[Tensor]]):
|
||
|
params = self.param_group["params"]
|
||
|
params_with_grad = []
|
||
|
grads = []
|
||
|
state_sums = []
|
||
|
state_steps: List[Tensor] = []
|
||
|
|
||
|
if len(params) != len(gradients):
|
||
|
raise ValueError(
|
||
|
"the gradients passed in does not equal to the size of the parameters!"
|
||
|
+ f"Params length: {len(params)}. "
|
||
|
+ f"Gradients length: {len(gradients)}"
|
||
|
)
|
||
|
|
||
|
has_sparse_grad, has_complex = False, False
|
||
|
for param, gradient in zip(self.param_group["params"], gradients):
|
||
|
if gradient is not None:
|
||
|
has_sparse_grad |= gradient.is_sparse
|
||
|
has_complex |= torch.is_complex(param)
|
||
|
params_with_grad.append(param)
|
||
|
grads.append(gradient)
|
||
|
state = self.state[param]
|
||
|
state_sums.append(state["sum"])
|
||
|
state_steps.append(state["step"])
|
||
|
|
||
|
with torch.no_grad():
|
||
|
F.adagrad(
|
||
|
params,
|
||
|
grads,
|
||
|
state_sums,
|
||
|
state_steps,
|
||
|
lr=self.defaults["lr"],
|
||
|
weight_decay=self.defaults["weight_decay"],
|
||
|
lr_decay=self.defaults["lr_decay"],
|
||
|
eps=self.defaults["eps"],
|
||
|
has_sparse_grad=has_sparse_grad,
|
||
|
foreach=self.foreach,
|
||
|
maximize=self.maximize,
|
||
|
has_complex=has_complex,
|
||
|
)
|