ai-content-maker/.venv/Lib/site-packages/torch/distributed/optim/functional_rmsprop.py

123 lines
4.3 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from typing import Dict, List, Optional
import torch
import torch.optim._functional as F
from torch import Tensor
__all__: List[str] = []
# Define a TorchScript compatible Functional RMSprop Optimizer
# where we use these optimizer in a functional way.
# Instead of using the `param.grad` when updating parameters,
# we explicitly allow the distributed optimizer pass gradients to
# the `step` function. In this way, we could separate the gradients
# and parameters and allow multithreaded trainer to update the
# parameters without data traces on accumulating to the same .grad.
# NOTE: This should be only used by distributed optimizer internals
# and not meant to expose to the user.
@torch.jit.script
class _FunctionalRMSprop:
def __init__(
self,
params: List[Tensor],
lr: float = 1e-2,
alpha: float = 0.99,
eps: float = 1e-8,
weight_decay: float = 0.0,
momentum: float = 0.0,
centered: bool = False,
foreach: bool = False,
maximize: bool = False,
_allow_empty_param_list: bool = False,
):
self.defaults = {
"lr": lr,
"alpha": alpha,
"eps": eps,
"weight_decay": weight_decay,
"momentum": momentum,
}
self.centered = centered
self.foreach = foreach
self.maximize = maximize
if len(params) == 0 and not _allow_empty_param_list:
raise ValueError("optimizer got an empty parameter list")
# NOTE: we only have one param_group and don't allow user to add additional
# param group as it's not a common use case.
self.param_group = {"params": params}
self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
def step(self, gradients: List[Optional[Tensor]]):
params = self.param_group["params"]
params_with_grad = []
grads = []
square_avgs = []
grad_avgs = []
momentum_buffer_list = []
lr = self.defaults["lr"]
alpha = self.defaults["alpha"]
eps = self.defaults["eps"]
momentum = self.defaults["momentum"]
weight_decay = self.defaults["weight_decay"]
if len(params) != len(gradients):
raise ValueError(
"the gradients passed in does not equal to the size of the parameters!"
+ f"Params length: {len(params)}. "
+ f"Gradients length: {len(gradients)}"
)
has_complex = False
for param, gradient in zip(params, gradients):
if gradient is not None:
has_complex |= torch.is_complex(param)
params_with_grad.append(param)
grads.append(gradient)
# Lazy state initialization
if param not in self.state:
self.state[param] = {}
state = self.state[param]
state["step"] = torch.tensor(0.0)
state["square_avg"] = torch.zeros_like(
param, memory_format=torch.preserve_format
)
if momentum > 0:
state["momentum_buffer"] = torch.zeros_like(
param, memory_format=torch.preserve_format
)
if self.centered:
state["grad_avg"] = torch.zeros_like(
param, memory_format=torch.preserve_format
)
state = self.state[param]
square_avgs.append(state["square_avg"])
if momentum > 0:
momentum_buffer_list.append(state["momentum_buffer"])
if self.centered:
grad_avgs.append(state["grad_avg"])
state["step"] += 1
with torch.no_grad():
F.rmsprop(
params_with_grad,
grads,
square_avgs,
grad_avgs,
momentum_buffer_list,
lr=lr,
alpha=alpha,
eps=eps,
weight_decay=weight_decay,
momentum=momentum,
centered=self.centered,
foreach=self.foreach,
maximize=self.maximize,
has_complex=has_complex,
)