ai-content-maker/.venv/Lib/site-packages/torch/utils/hipify/hipify_python.py

1160 lines
45 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
#!/usr/bin/env python3
""" The Python Hipify script.
##
# Copyright (c) 2015-2016 Advanced Micro Devices, Inc. All rights reserved.
# 2017-2018 Advanced Micro Devices, Inc. and
# Facebook Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
import argparse
import fnmatch
import re
import shutil
import sys
import os
from . import constants
from .cuda_to_hip_mappings import CUDA_TO_HIP_MAPPINGS
from .cuda_to_hip_mappings import MATH_TRANSPILATIONS
from typing import Dict, List, Iterator, Optional
from collections.abc import Mapping, Iterable
from enum import Enum
class CurrentState(Enum):
INITIALIZED = 1
DONE = 2
class HipifyResult:
def __init__(self, current_state, hipified_path):
self.current_state = current_state
self.hipified_path = hipified_path
self.status = ""
def __str__(self):
return ("HipifyResult:: current_state: {}, hipified_path : {}, status: {}".format(self.current_state,
self.hipified_path, self.status))
HipifyFinalResult = Dict[str, HipifyResult]
HIPIFY_C_BREADCRUMB = "// !!! This is a file automatically generated by hipify!!!\n"
HIPIFY_FINAL_RESULT: HipifyFinalResult = {}
# Hardcode the PyTorch template map
"""This dictionary provides the mapping from PyTorch kernel template types
to their actual types."""
PYTORCH_TEMPLATE_MAP = {"Dtype": "scalar_t", "T": "scalar_t"}
__all__ = ['InputError', 'openf', 'bcolors', 'GeneratedFileCleaner', 'match_extensions', 'matched_files_iter',
'preprocess_file_and_save_result', 'compute_stats', 'add_dim3', 'processKernelLaunches', 'find_closure_group',
'find_bracket_group', 'find_parentheses_group', 'replace_math_functions', 'hip_header_magic', 'replace_extern_shared',
'get_hip_file_path', 'is_out_of_place', 'is_pytorch_file', 'is_cusparse_file', 'is_special_file', 'is_caffe2_gpu_file',
'is_caffe2_gpu_file', 'Trie', 'preprocessor', 'file_specific_replacement', 'file_add_header',
'fix_static_global_kernels', 'extract_arguments', 'str2bool', 'CurrentState', 'HipifyResult', 'hipify']
class InputError(Exception):
# Exception raised for errors in the input.
def __init__(self, message):
super().__init__(message)
self.message = message
def __str__(self):
return f"Input error: {self.message}"
def openf(filename, mode):
return open(filename, mode, errors='ignore')
# Color coding for printing
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
# To the programmer, the output of hipify most likely are intermediates.
# This class allows users of hipify to ask for a cleanup by running the
# hipify and compilation in a with instantiating this context manager class
# with keep_intermediates=False.
# The main usecase is the cpp_extensions, specifically the load method.
# It is a good idea to keep intermediates (in case of errors or to
# not recompile unchanged files), but in cases where you don't want to
# keep them (e.g. in the CI), this can be used to remove files.
class GeneratedFileCleaner:
"""Context Manager to clean up generated files"""
def __init__(self, keep_intermediates=False):
self.keep_intermediates = keep_intermediates
self.files_to_clean = set()
self.dirs_to_clean = []
def __enter__(self):
return self
def open(self, fn, *args, **kwargs):
if not os.path.exists(fn):
self.files_to_clean.add(os.path.abspath(fn))
return open(fn, *args, **kwargs)
def makedirs(self, dn, exist_ok=False):
parent, n = os.path.split(dn)
if not n:
parent, n = os.path.split(parent)
if parent and n and not os.path.exists(parent):
self.makedirs(parent, exist_ok=True)
if not os.path.isdir(dn) or not exist_ok:
os.mkdir(dn)
self.dirs_to_clean.append(os.path.abspath(dn))
def __exit__(self, type, value, traceback):
if not self.keep_intermediates:
for f in self.files_to_clean:
os.unlink(f)
for d in self.dirs_to_clean[::-1]:
os.rmdir(d)
def match_extensions(filename: str, extensions: Iterable) -> bool:
"""Helper method to see if filename ends with certain extension"""
return any(filename.endswith(e) for e in extensions)
def _fnmatch(filepath, patterns):
return any(fnmatch.fnmatch(filepath, pattern) for pattern in patterns)
def matched_files_iter(
root_path: str,
includes: Iterable = (),
ignores: Iterable = (),
extensions: Iterable = (),
out_of_place_only: bool = False,
is_pytorch_extension: bool = False) -> Iterator[str]:
exact_matches = set(includes)
# This is a very rough heuristic; really, we want to avoid scanning
# any file which is not checked into source control, but this script
# needs to work even if you're in a Git or Hg checkout, so easier to
# just block the biggest time sinks that won't matter in the
# end.
for (abs_dirpath, dirs, filenames) in os.walk(root_path, topdown=True):
rel_dirpath = os.path.relpath(abs_dirpath, root_path)
if rel_dirpath == '.':
# Blah blah blah O(n) blah blah
if ".git" in dirs:
dirs.remove(".git")
if "build" in dirs:
dirs.remove("build")
if "third_party" in dirs:
dirs.remove("third_party")
dirs.append("third_party/nvfuser")
for filename in filenames:
filepath = os.path.join(abs_dirpath, filename)
rel_filepath = os.path.join(rel_dirpath, filename)
# We respect extensions, UNLESS you wrote the entire
# filename verbatim, in which case we always accept it
if (
_fnmatch(filepath, includes)
and (not _fnmatch(filepath, ignores))
and (match_extensions(filepath, extensions) or filepath in exact_matches)
):
if not is_pytorch_extension: # for pytorch extensions, consider all files
if not is_pytorch_file(rel_filepath) and not is_caffe2_gpu_file(rel_filepath):
continue
if out_of_place_only and not is_out_of_place(rel_filepath):
continue
yield filepath
def preprocess_file_and_save_result(
output_directory: str,
filepath: str,
all_files: Iterable,
header_include_dirs: Iterable,
stats: Dict[str, List],
hip_clang_launch: bool,
is_pytorch_extension: bool,
clean_ctx: GeneratedFileCleaner,
show_progress: bool) -> None:
fin_path = os.path.abspath(os.path.join(output_directory, filepath))
hipify_result = HipifyResult(current_state=CurrentState.INITIALIZED, hipified_path=fin_path)
HIPIFY_FINAL_RESULT[fin_path] = hipify_result
result = preprocessor(output_directory, filepath, all_files, header_include_dirs, stats,
hip_clang_launch, is_pytorch_extension, clean_ctx, show_progress)
# Show what happened
if show_progress and "ignored" not in result.status:
print(
fin_path, "->",
result.hipified_path, result.status, flush=True)
HIPIFY_FINAL_RESULT[fin_path] = result
def compute_stats(stats):
unsupported_calls = {cuda_call for (cuda_call, _filepath) in stats["unsupported_calls"]}
# Print the number of unsupported calls
print(f"Total number of unsupported CUDA function calls: {len(unsupported_calls):d}")
# Print the list of unsupported calls
print(", ".join(unsupported_calls))
# Print the number of kernel launches
print(f"\nTotal number of replaced kernel launches: {len(stats['kernel_launches']):d}")
def add_dim3(kernel_string, cuda_kernel):
'''adds dim3() to the second and third arguments in the kernel launch'''
count = 0
closure = 0
kernel_string = kernel_string.replace("<<<", "").replace(">>>", "")
arg_locs: List[Dict[str, int]] = [{} for _ in range(2)]
arg_locs[count]['start'] = 0
for ind, c in enumerate(kernel_string):
if count > 1:
break
if c == "(":
closure += 1
elif c == ")":
closure -= 1
if (c == "," or ind == len(kernel_string) - 1) and closure == 0:
arg_locs[count]['end'] = ind + (c != ",")
count += 1
if count < 2:
arg_locs[count]['start'] = ind + 1
first_arg_raw = kernel_string[arg_locs[0]['start']:arg_locs[0]['end'] + 1]
second_arg_raw = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']]
first_arg_clean = kernel_string[arg_locs[0]['start']:arg_locs[0]['end']].replace("\n", "").strip(" ")
second_arg_clean = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']].replace("\n", "").strip(" ")
first_arg_dim3 = f"dim3({first_arg_clean})"
second_arg_dim3 = f"dim3({second_arg_clean})"
first_arg_raw_dim3 = first_arg_raw.replace(first_arg_clean, first_arg_dim3)
second_arg_raw_dim3 = second_arg_raw.replace(second_arg_clean, second_arg_dim3)
cuda_kernel = cuda_kernel.replace(first_arg_raw + second_arg_raw, first_arg_raw_dim3 + second_arg_raw_dim3)
return cuda_kernel
RE_KERNEL_LAUNCH = re.compile(r'([ ]+)(detail?)::[ ]+\\\n[ ]+')
def processKernelLaunches(string, stats):
""" Replace the CUDA style Kernel launches with the HIP style kernel launches."""
# Concat the namespace with the kernel names. (Find cleaner way of doing this later).
string = RE_KERNEL_LAUNCH.sub(lambda inp: f"{inp.group(1)}{inp.group(2)}::", string)
def grab_method_and_template(in_kernel):
# The positions for relevant kernel components.
pos = {
"kernel_launch": {"start": in_kernel["start"], "end": in_kernel["end"]},
"kernel_name": {"start": -1, "end": -1},
"template": {"start": -1, "end": -1}
}
# Count for balancing template
count = {"<>": 0}
# Status for whether we are parsing a certain item.
START = 0
AT_TEMPLATE = 1
AFTER_TEMPLATE = 2
AT_KERNEL_NAME = 3
status = START
# Parse the string character by character
for i in range(pos["kernel_launch"]["start"] - 1, -1, -1):
char = string[i]
# Handle Templating Arguments
if status in (START, AT_TEMPLATE):
if char == ">":
if status == START:
status = AT_TEMPLATE
pos["template"]["end"] = i
count["<>"] += 1
if char == "<":
count["<>"] -= 1
if count["<>"] == 0 and (status == AT_TEMPLATE):
pos["template"]["start"] = i
status = AFTER_TEMPLATE
# Handle Kernel Name
if status != AT_TEMPLATE:
if string[i].isalnum() or string[i] in {'(', ')', '_', ':', '#'}:
if status != AT_KERNEL_NAME:
status = AT_KERNEL_NAME
pos["kernel_name"]["end"] = i
# Case: Kernel name starts the string.
if i == 0:
pos["kernel_name"]["start"] = 0
# Finished
return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])]
else:
# Potential ending point if we're already traversing a kernel's name.
if status == AT_KERNEL_NAME:
pos["kernel_name"]["start"] = i
# Finished
return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])]
def find_kernel_bounds(string):
"""Finds the starting and ending points for all kernel launches in the string."""
kernel_end = 0
kernel_positions = []
# Continue until we cannot find any more kernels anymore.
while string.find("<<<", kernel_end) != -1:
# Get kernel starting position (starting from the previous ending point)
kernel_start = string.find("<<<", kernel_end)
# Get kernel ending position (adjust end point past the >>>)
kernel_end = string.find(">>>", kernel_start) + 3
if kernel_end <= 0:
raise InputError("no kernel end found")
# Add to list of traversed kernels
kernel_positions.append({"start": kernel_start, "end": kernel_end,
"group": string[kernel_start: kernel_end]})
return kernel_positions
# Replace comments and string literals from the code so that find_kernel_bounds does not
# wrongly capture kernels in comments and string literals.
# This function replaces them with "x" to keep positions.
def mask_comments(string):
in_comment = ''
prev_c = ''
new_string = ''
for c in string:
if in_comment == '':
# Outside comments
if c == '/' and prev_c == '/':
in_comment = '//'
elif c == '*' and prev_c == '/':
in_comment = '/*'
elif c == '"' and prev_c != '\\' and prev_c != "'":
in_comment = '"'
elif in_comment == '//':
# In // xxx
if c == '\r' or c == '\n':
in_comment = ''
elif in_comment == '/*':
# In /* xxx */
if c == '/' and prev_c == '*':
in_comment = ''
elif in_comment == '"':
# In ""
if c == '"' and prev_c != '\\':
in_comment = ''
prev_c = c
if in_comment == '':
new_string += c
else:
new_string += 'x'
return new_string
# Grab positional ranges of all kernel launches
get_kernel_positions = list(find_kernel_bounds(mask_comments(string)))
output_string = string
# Replace each CUDA kernel with a HIP kernel.
for kernel in get_kernel_positions:
# Get kernel components
params = grab_method_and_template(kernel)
# Find parenthesis after kernel launch
parenthesis = string.find("(", kernel["end"])
# Extract cuda kernel
cuda_kernel = string[params[0]["start"]:parenthesis + 1]
kernel_string = string[kernel['start']:kernel['end']]
end_param_index = 0 if params[1]['end'] == -1 else 1
kernel_name_with_template = string[params[0]['start']:params[end_param_index]['end'] + 1]
cuda_kernel_dim3 = add_dim3(kernel_string, cuda_kernel)
# Keep number of kernel launch params consistent (grid dims, group dims, stream, dynamic shared size)
num_klp = len(extract_arguments(0, kernel["group"].replace("<<<", "(").replace(">>>", ")")))
hip_kernel = "hipLaunchKernelGGL(" + cuda_kernel_dim3[0:-1].replace(
">>>", ", 0" * (4 - num_klp) + ">>>").replace("<<<", ", ").replace(
">>>", ", ").replace(kernel_name_with_template, "(" + kernel_name_with_template + ")")
# Replace cuda kernel with hip kernel
output_string = output_string.replace(cuda_kernel, hip_kernel)
# Update the statistics
stats["kernel_launches"].append(hip_kernel)
return output_string
def find_closure_group(input_string, start, group):
"""Generalization for finding a balancing closure group
if group = ["(", ")"], then finds the first balanced parentheses.
if group = ["{", "}"], then finds the first balanced bracket.
Given an input string, a starting position in the input string, and the group type,
find_closure_group returns the positions of group[0] and group[1] as a tuple.
Example:
>>> find_closure_group("(hi)", 0, ["(", ")"])
(0, 3)
"""
inside_parenthesis = False
parens = 0
pos = start
p_start, p_end = -1, -1
while pos < len(input_string):
if input_string[pos] == group[0]:
if inside_parenthesis is False:
inside_parenthesis = True
parens = 1
p_start = pos
else:
parens += 1
elif input_string[pos] == group[1] and inside_parenthesis:
parens -= 1
if parens == 0:
p_end = pos
return p_start, p_end
pos += 1
return None, None
def find_bracket_group(input_string, start):
"""Finds the first balanced parantheses."""
return find_closure_group(input_string, start, group=["{", "}"])
def find_parentheses_group(input_string, start):
"""Finds the first balanced bracket."""
return find_closure_group(input_string, start, group=["(", ")"])
RE_ASSERT = re.compile(r"\bassert[ ]*\(")
def replace_math_functions(input_string):
"""FIXME: Temporarily replace std:: invocations of math functions
with non-std:: versions to prevent linker errors NOTE: This
can lead to correctness issues when running tests, since the
correct version of the math function (exp/expf) might not get
called. Plan is to remove this function once HIP supports
std:: math function calls inside device code
"""
output_string = input_string
for func in MATH_TRANSPILATIONS:
output_string = output_string.replace(fr'{func}(', f'{MATH_TRANSPILATIONS[func]}(')
return output_string
RE_SYNCTHREADS = re.compile(r":?:?\b(__syncthreads)\b(\w*\()")
def hip_header_magic(input_string):
"""If the file makes kernel builtin calls and does not include the cuda_runtime.h header,
then automatically add an #include to match the "magic" includes provided by NVCC.
TODO:
Update logic to ignore cases where the cuda_runtime.h is included by another file.
"""
# Copy the input.
output_string = input_string
# Check if one of the following headers is already included.
headers = ["hip/hip_runtime.h", "hip/hip_runtime_api.h"]
if any(re.search(fr'#include ("{ext}"|<{ext}>)', output_string) for ext in headers):
return output_string
# Rough logic to detect if we're inside device code
hasDeviceLogic: int
hasDeviceLogic = "hipLaunchKernelGGL" in output_string
hasDeviceLogic += "__global__" in output_string
hasDeviceLogic += "__shared__" in output_string
hasDeviceLogic += RE_SYNCTHREADS.search(output_string) is not None
# If device logic found, provide the necessary header.
if hasDeviceLogic:
output_string = '#include "hip/hip_runtime.h"\n' + input_string
return output_string
RE_EXTERN_SHARED = re.compile(r"extern\s+([\w\(\)]+)?\s*__shared__\s+([\w:<>\s]+)\s+(\w+)\s*\[\s*\]\s*;")
def replace_extern_shared(input_string):
"""Match extern __shared__ type foo[]; syntax and use HIP_DYNAMIC_SHARED() MACRO instead.
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#__shared__
Example:
"extern __shared__ char smemChar[];" => "HIP_DYNAMIC_SHARED( char, smemChar)"
"extern __shared__ unsigned char smem[];" => "HIP_DYNAMIC_SHARED( unsigned char, my_smem)"
"""
output_string = input_string
output_string = RE_EXTERN_SHARED.sub(
lambda inp: f"HIP_DYNAMIC_SHARED({inp.group(1) or ''} {inp.group(2)}, {inp.group(3)})", output_string)
return output_string
def get_hip_file_path(rel_filepath, is_pytorch_extension=False):
"""
Returns the new name of the hipified file
"""
# At the moment, some PyTorch source files are HIPified in place. The predicate
# is_out_of_place tells us if this is the case or not.
assert not os.path.isabs(rel_filepath)
if not is_pytorch_extension and not is_out_of_place(rel_filepath):
return rel_filepath
dirpath, filename = os.path.split(rel_filepath)
root, ext = os.path.splitext(filename)
# Here's the plan:
#
# In general, we need to disambiguate the HIPified filename so that
# it gets a different name from the original filename, so
# that we don't overwrite the original file
#
# There's a lot of different naming conventions across PyTorch
# and Caffe2, but the general recipe is to convert occurrences
# of cuda/gpu to hip, and add hip if there are no occurrences
# of cuda/gpu anywhere.
#
# Concretely, we do the following:
#
# - If there is a directory component named "cuda", replace
# it with "hip", AND
#
# - If the file name contains "CUDA", replace it with "HIP", AND
#
# - ALWAYS replace '.cu' with '.hip', because those files
# contain CUDA kernels that needs to be hipified and processed with
# hip compiler
#
# - If we are not hipifying a PyTorch extension, and the parent
# directory name did not change as a result of the above
# transformations, insert "hip" in the file path
# as the direct parent folder of the file
#
# - If we are hipifying a PyTorch extension, and the parent directory
# name as well as the filename (incl. extension) did not change as
# a result of the above transformations, insert "_hip" in the filename
#
# This isn't set in stone; we might adjust this to support other
# naming conventions.
if ext == '.cu':
ext = '.hip'
orig_filename = filename
orig_dirpath = dirpath
dirpath = dirpath.replace('cuda', 'hip')
dirpath = dirpath.replace('CUDA', 'HIP')
dirpath = dirpath.replace('THC', 'THH')
root = root.replace('cuda', 'hip')
root = root.replace('CUDA', 'HIP')
# Special case to handle caffe2/core/THCCachingAllocator
if dirpath != "caffe2/core":
root = root.replace('THC', 'THH')
if not is_pytorch_extension and dirpath == orig_dirpath:
dirpath = os.path.join(dirpath, 'hip')
if is_pytorch_extension and dirpath == orig_dirpath and (root + ext) == orig_filename:
root = root + "_hip"
return os.path.join(dirpath, root + ext)
def is_out_of_place(rel_filepath):
assert not os.path.isabs(rel_filepath)
if rel_filepath.startswith("torch/"):
return False
if rel_filepath.startswith("third_party/nvfuser/"):
return False
if rel_filepath.startswith("tools/autograd/templates/"):
return False
return True
# Keep this synchronized with includes/ignores in build_amd.py
def is_pytorch_file(rel_filepath):
assert not os.path.isabs(rel_filepath)
if rel_filepath.startswith("aten/"):
if rel_filepath.startswith("aten/src/ATen/core/"):
return False
return True
if rel_filepath.startswith("torch/"):
return True
if rel_filepath.startswith("third_party/nvfuser/"):
return True
if rel_filepath.startswith("tools/autograd/templates/"):
return True
return False
def is_cusparse_file(rel_filepath):
if is_pytorch_file(rel_filepath):
return "sparse" in rel_filepath.lower()
return False
def is_special_file(rel_filepath):
if is_pytorch_file(rel_filepath):
if "sparse" in rel_filepath.lower():
return True
elif "linalg" in rel_filepath.lower():
if "batchlinearalgebralibblas" in rel_filepath.lower():
return False # don't use "special" mappings for this specific linalg cublas file
return True
return False
def is_caffe2_gpu_file(rel_filepath):
assert not os.path.isabs(rel_filepath)
if rel_filepath.startswith("c10/cuda"):
return True
filename = os.path.basename(rel_filepath)
_, ext = os.path.splitext(filename)
return ('gpu' in filename or ext in ['.cu', '.cuh']) and ('cudnn' not in filename)
class TrieNode:
"""A Trie node whose children are represented as a directory of char: TrieNode.
A special char '' represents end of word
"""
def __init__(self):
self.children = {}
class Trie:
"""Creates a Trie out of a list of words. The trie can be exported to a Regex pattern.
The corresponding Regex should match much faster than a simple Regex union."""
def __init__(self):
"""Initialize the trie with an empty root node."""
self.root = TrieNode()
def add(self, word):
"""Add a word to the Trie. """
node = self.root
for char in word:
node.children.setdefault(char, TrieNode())
node = node.children[char]
node.children[''] = True # Mark the end of the word
def dump(self):
"""Return the root node of Trie. """
return self.root
def quote(self, char):
""" Escape a char for regex. """
return re.escape(char)
def search(self, word):
"""Search whether word is present in the Trie.
Returns True if yes, else return False"""
node = self.root
for char in word:
if char in node.children:
node = node.children[char]
else:
return False
# make sure to check the end-of-word marker present
return '' in node.children
def _pattern(self, root):
"""Convert a Trie into a regular expression pattern"""
node = root
if "" in node.children and len(node.children.keys()) == 1:
return None
alt = [] # store alternative patterns
cc = [] # store char to char classes
q = 0 # for node representing the end of word
for char in sorted(node.children.keys()):
if isinstance(node.children[char], TrieNode):
try:
recurse = self._pattern(node.children[char])
alt.append(self.quote(char) + recurse)
except Exception:
cc.append(self.quote(char))
else:
q = 1
cconly = not len(alt) > 0
if len(cc) > 0:
if len(cc) == 1:
alt.append(cc[0])
else:
alt.append('[' + ''.join(cc) + ']')
if len(alt) == 1:
result = alt[0]
else:
result = "(?:" + "|".join(alt) + ")"
if q:
if cconly:
result += "?"
else:
result = f"(?:{result})?"
return result
def pattern(self):
"""Export the Trie to a regex pattern."""
return self._pattern(self.root)
def export_to_regex(self):
"""Export the Trie to a regex pattern."""
return self._pattern(self.root)
CAFFE2_TRIE = Trie()
CAFFE2_MAP = {}
PYTORCH_TRIE = Trie()
PYTORCH_MAP: Dict[str, object] = {}
# In PyTorch, we map cuBLAS->rocBLAS and cuSPARSE->hipSPARSE. Note the prefix, roc versus hip.
# The 'hip' APIs offer a more direct CUDA-friendly mapping, but calling rocBLAS directly has better performance.
# Unfortunately, the roc* types and hip* types differ, i.e., rocblas_float_complex versus hipComplex.
# In the case of SPARSE, we must use the hip types for complex instead of the roc types,
# but the pytorch mappings assume roc. Therefore, we create a new SPARSE mapping that has a higher priority.
# Its mappings will trigger first, and only when a miss occurs will the lower-priority pytorch mapping take place.
# When a file contains "sparse" in the filename, a mapping marked with API_SPARSE is preferred over other choices.
# Similarly, "linalg" files require rocBLAS -> hipSOLVER so they also need special handling.
PYTORCH_SPECIAL_MAP = {}
for mapping in CUDA_TO_HIP_MAPPINGS:
assert isinstance(mapping, Mapping)
for src, value in mapping.items():
dst = value[0]
meta_data = value[1:]
if constants.API_CAFFE2 not in meta_data:
PYTORCH_TRIE.add(src)
# if src is already in PYTORCH_MAP and dst belongs to API_SPECIAL
# do not overwrite PYTORCH_MAP, store dst separately
if constants.API_SPECIAL in meta_data and PYTORCH_MAP.get(src, ""):
PYTORCH_SPECIAL_MAP[src] = dst
else:
PYTORCH_MAP[src] = dst
if constants.API_PYTORCH not in meta_data and constants.API_SPECIAL not in meta_data:
CAFFE2_TRIE.add(src)
CAFFE2_MAP[src] = dst
RE_CAFFE2_PREPROCESSOR = re.compile(CAFFE2_TRIE.export_to_regex())
RE_PYTORCH_PREPROCESSOR = re.compile(fr'(?<=\W)({PYTORCH_TRIE.export_to_regex()})(?=\W)')
RE_QUOTE_HEADER = re.compile(r'#include "([^"]+)"')
RE_ANGLE_HEADER = re.compile(r'#include <([^>]+)>')
RE_THC_GENERIC_FILE = re.compile(r'#define THC_GENERIC_FILE "([^"]+)"')
RE_CU_SUFFIX = re.compile(r'\.cu\b') # be careful not to pick up .cuh
"""
Returns a HipifyResult object with the following details:
"hipified_path" : absolute path of hipified source file
"status" : "ok" if hipified file was written out
"skipped" if an identical hipified file already existed or hipified file couldn't be written out
"ignored" if the source file was a hipified file itself or not meant to be hipified
"current_state" : CurrentState.INITIALIZED if source file is first ready to be hipified
CurrentState.DONE if source file is done with hipification process
"""
def preprocessor(
output_directory: str,
filepath: str,
all_files: Iterable,
header_include_dirs: Iterable,
stats: Dict[str, List],
hip_clang_launch: bool,
is_pytorch_extension: bool,
clean_ctx: GeneratedFileCleaner,
show_progress: bool) -> HipifyResult:
""" Executes the CUDA -> HIP conversion on the specified file. """
fin_path = os.path.abspath(os.path.join(output_directory, filepath))
hipify_result = HIPIFY_FINAL_RESULT[fin_path]
if filepath not in all_files:
hipify_result.hipified_path = None
hipify_result.status = "[ignored, not to be hipified]"
hipify_result.current_state = CurrentState.DONE
return hipify_result
rel_filepath = os.path.relpath(filepath, output_directory)
with open(fin_path, encoding='utf-8') as fin:
if fin.readline() == HIPIFY_C_BREADCRUMB:
hipify_result.hipified_path = None
hipify_result.status = "[ignored, input is hipified output]"
hipify_result.current_state = CurrentState.DONE
return hipify_result
fin.seek(0)
output_source = fin.read()
orig_output_source = output_source
# get_hip_file_path needs a relative path to work correctly
fout_path = os.path.abspath(os.path.join(output_directory, get_hip_file_path(rel_filepath, is_pytorch_extension)))
if not os.path.exists(os.path.dirname(fout_path)):
clean_ctx.makedirs(os.path.dirname(fout_path))
# unsupported_calls statistics reporting is broken atm
def pt_repl(m):
return PYTORCH_MAP[m.group(0)]
def pt_special_repl(m):
# checks SPECIAL map first, and if a miss occurs, falls back to pytorch mappings
return PYTORCH_SPECIAL_MAP.get(m.group(0), pt_repl(m))
if is_pytorch_extension:
output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_repl, output_source)
else:
if is_special_file(rel_filepath):
output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_special_repl, output_source)
elif is_pytorch_file(rel_filepath):
output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_repl, output_source)
else:
def c2_repl(m):
return CAFFE2_MAP[m.group(0)]
output_source = RE_CAFFE2_PREPROCESSOR.sub(c2_repl, output_source)
# Header rewrites
def mk_repl(templ, include_current_dir=True):
def repl(m):
f = m.group(1)
dirpath, filename = os.path.split(f)
if (
f.startswith(("ATen/cuda",
"ATen/native/cuda",
"ATen/native/nested/cuda",
"ATen/native/quantized/cuda",
"ATen/native/sparse/cuda",
"ATen/native/transformers/cuda",
"THC/")) or
(f.startswith("THC") and not f.startswith("THCP"))
):
return templ.format(get_hip_file_path(m.group(1), is_pytorch_extension))
# if filename is one of the files being hipified for this extension
if (is_pytorch_extension and any(s.endswith(filename) for s in all_files)):
header_dir = None
header_filepath = None
# If include_current_dir True, look first in same dir as the including source file
if include_current_dir:
header_dir_to_check = os.path.dirname(fin_path)
header_path_to_check = os.path.abspath(os.path.join(header_dir_to_check, f))
if os.path.exists(header_path_to_check):
header_dir = header_dir_to_check
header_filepath = header_path_to_check
# If not found, look in include dirs one by one and first match wins
if header_filepath is None:
for header_include_dir in header_include_dirs:
header_dir_to_check = os.path.join(output_directory, header_include_dir)
header_path_to_check = os.path.abspath(os.path.join(header_dir_to_check, f))
if os.path.exists(header_path_to_check):
header_dir = header_dir_to_check
header_filepath = header_path_to_check
# If header file not found, keep as is
if header_filepath is None:
return m.group(0)
# Hipify header file first if needed
if header_filepath not in HIPIFY_FINAL_RESULT:
preprocess_file_and_save_result(output_directory,
header_filepath,
all_files, header_include_dirs, stats, hip_clang_launch,
is_pytorch_extension, clean_ctx, show_progress)
elif header_filepath in HIPIFY_FINAL_RESULT:
header_result = HIPIFY_FINAL_RESULT[header_filepath]
if header_result.current_state == CurrentState.INITIALIZED:
# get_hip_file_path needs a relative path to work correctly
header_rel_path = os.path.relpath(header_filepath, output_directory)
header_fout_path = os.path.abspath(os.path.join(output_directory,
get_hip_file_path(header_rel_path, is_pytorch_extension)))
header_result.hipified_path = header_fout_path
HIPIFY_FINAL_RESULT[header_filepath] = header_result
return templ.format(os.path.relpath(header_fout_path if header_fout_path is not None
else header_filepath, header_dir))
hipified_header_filepath = HIPIFY_FINAL_RESULT[header_filepath].hipified_path
return templ.format(os.path.relpath(hipified_header_filepath if hipified_header_filepath is not None
else header_filepath, header_dir))
return m.group(0)
return repl
output_source = RE_QUOTE_HEADER.sub(mk_repl('#include "{0}"', True), output_source)
output_source = RE_ANGLE_HEADER.sub(mk_repl('#include <{0}>', False), output_source)
output_source = RE_THC_GENERIC_FILE.sub(mk_repl('#define THC_GENERIC_FILE "{0}"'), output_source)
# CMakeLists.txt rewrites
if filepath.endswith('CMakeLists.txt'):
output_source = output_source.replace('CUDA', 'HIP')
output_source = output_source.replace('THC', 'THH')
output_source = RE_CU_SUFFIX.sub('.hip', output_source)
# Perform Kernel Launch Replacements
if not hip_clang_launch:
output_source = processKernelLaunches(output_source, stats)
# Replace std:: with non-std:: versions
if (filepath.endswith((".cu", ".cuh"))) and "PowKernel" not in filepath:
output_source = replace_math_functions(output_source)
# Include header if device code is contained.
output_source = hip_header_magic(output_source)
# Replace the extern __shared__
# NOTE: No longer needed after transition from hcc to hipclang.
# output_source = replace_extern_shared(output_source)
# Don't write out identical hipified files for extensions if dirpath has not changed
if (
is_pytorch_extension
and orig_output_source == output_source
and os.path.dirname(fin_path) == os.path.dirname(fout_path)
):
hipify_result.hipified_path = fin_path
hipify_result.status = "[skipped, no changes]"
hipify_result.current_state = CurrentState.DONE
return hipify_result
# Add hipify breadcrumb for C-style files to avoid re-hipification
if fin_path != fout_path and match_extensions(fin_path, (".cu", ".cuh", ".c", ".cc", ".cpp", ".h", ".hpp")):
output_source = HIPIFY_C_BREADCRUMB + output_source
do_write = True
if os.path.exists(fout_path):
with open(fout_path, encoding='utf-8') as fout_old:
do_write = fout_old.read() != output_source
if do_write:
try:
with clean_ctx.open(fout_path, 'w', encoding='utf-8') as fout:
fout.write(output_source)
hipify_result.hipified_path = fout_path
hipify_result.status = "[ok]"
hipify_result.current_state = CurrentState.DONE
return hipify_result
except PermissionError as e:
print(f"{bcolors.WARNING}Failed to save {fout_path} with \"{e.strerror}\", leaving {fin_path} unchanged.{bcolors.ENDC}",
file=sys.stderr)
hipify_result.hipified_path = fin_path
hipify_result.status = "[skipped, no permissions]"
hipify_result.current_state = CurrentState.DONE
return hipify_result
else:
hipify_result.hipified_path = fout_path
hipify_result.status = "[skipped, already hipified]"
hipify_result.current_state = CurrentState.DONE
return hipify_result
def file_specific_replacement(filepath, search_string, replace_string, strict=False):
with openf(filepath, "r+") as f:
contents = f.read()
if strict:
contents = re.sub(fr'\b({re.escape(search_string)})\b', lambda x: replace_string, contents)
else:
contents = contents.replace(search_string, replace_string)
f.seek(0)
f.write(contents)
f.truncate()
def file_add_header(filepath, header):
with openf(filepath, "r+") as f:
contents = f.read()
if header[0] != "<" and header[-1] != ">":
header = f'"{header}"'
contents = (f'#include {header} \n') + contents
f.seek(0)
f.write(contents)
f.truncate()
def fix_static_global_kernels(in_txt):
"""Static global kernels in HIP results in a compilation error."""
in_txt = in_txt.replace(" __global__ static", "__global__")
return in_txt
RE_INCLUDE = re.compile(r"#include .*\n")
def extract_arguments(start, string):
""" Return the list of arguments in the upcoming function parameter closure.
Example:
string (input): '(blocks, threads, 0, THCState_getCurrentStream(state))'
arguments (output):
'[{'start': 1, 'end': 7},
{'start': 8, 'end': 16},
{'start': 17, 'end': 19},
{'start': 20, 'end': 53}]'
"""
arguments = []
closures = {
"<": 0,
"(": 0
}
current_position = start
argument_start_pos = current_position + 1
# Search for final parenthesis
while current_position < len(string):
if string[current_position] == "(":
closures["("] += 1
elif string[current_position] == ")":
closures["("] -= 1
elif string[current_position] == "<":
closures["<"] += 1
elif string[current_position] == ">" and string[current_position - 1] != "-" and closures["<"] > 0:
closures["<"] -= 1
# Finished all arguments
if closures["("] == 0 and closures["<"] == 0:
# Add final argument
arguments.append({"start": argument_start_pos, "end": current_position})
break
# Finished current argument
if closures["("] == 1 and closures["<"] == 0 and string[current_position] == ",":
arguments.append({"start": argument_start_pos, "end": current_position})
argument_start_pos = current_position + 1
current_position += 1
return arguments
def str2bool(v):
"""ArgumentParser doesn't support type=bool. Thus, this helper method will convert
from possible string types to True / False."""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def hipify(
project_directory: str,
show_detailed: bool = False,
extensions: Iterable = (".cu", ".cuh", ".c", ".cc", ".cpp", ".h", ".in", ".hpp"),
header_extensions: Iterable = (".cuh", ".h", ".hpp"),
output_directory: str = "",
header_include_dirs: Iterable = (),
includes: Iterable = ('*',),
extra_files: Iterable = (),
out_of_place_only: bool = False,
ignores: Iterable = (),
show_progress: bool = True,
hip_clang_launch: bool = False,
is_pytorch_extension: bool = False,
hipify_extra_files_only: bool = False,
clean_ctx: Optional[GeneratedFileCleaner] = None
) -> HipifyFinalResult:
if project_directory == "":
project_directory = os.getcwd()
# Verify the project directory exists.
if not os.path.exists(project_directory):
print("The project folder specified does not exist.")
sys.exit(1)
# If no output directory, provide a default one.
if not output_directory:
project_directory.rstrip("/")
output_directory = project_directory + "_amd"
if project_directory != output_directory:
includes = [include.replace(project_directory, output_directory) for include in includes]
ignores = [ignore.replace(project_directory, output_directory) for ignore in ignores]
# Copy from project directory to output directory if not done already.
if not os.path.exists(output_directory):
shutil.copytree(project_directory, output_directory)
all_files = list(matched_files_iter(output_directory, includes=includes,
ignores=ignores, extensions=extensions,
out_of_place_only=out_of_place_only,
is_pytorch_extension=is_pytorch_extension))
all_files_set = set(all_files)
for f in extra_files:
if not os.path.isabs(f):
f = os.path.join(output_directory, f)
if f not in all_files_set:
all_files.append(f)
# List all files in header_include_paths to ensure they are hipified
from pathlib import Path
for header_include_dir in header_include_dirs:
if os.path.isabs(header_include_dir):
header_include_dir_path = Path(header_include_dir)
else:
header_include_dir_path = Path(os.path.join(output_directory, header_include_dir))
for path in header_include_dir_path.rglob('*'):
if (
path.is_file()
and _fnmatch(str(path), includes)
and (not _fnmatch(str(path), ignores))
and match_extensions(path.name, header_extensions)
):
all_files.append(str(path))
if clean_ctx is None:
clean_ctx = GeneratedFileCleaner(keep_intermediates=True)
# Preprocessing statistics.
stats: Dict[str, List] = {"unsupported_calls": [], "kernel_launches": []}
for filepath in (all_files if not hipify_extra_files_only else extra_files):
preprocess_file_and_save_result(output_directory, filepath, all_files, header_include_dirs,
stats, hip_clang_launch, is_pytorch_extension, clean_ctx, show_progress)
print(bcolors.OKGREEN + "Successfully preprocessed all matching files." + bcolors.ENDC, file=sys.stderr)
# Show detailed summary
if show_detailed:
compute_stats(stats)
return HIPIFY_FINAL_RESULT