1160 lines
45 KiB
Python
1160 lines
45 KiB
Python
#!/usr/bin/env python3
|
|
""" The Python Hipify script.
|
|
##
|
|
# Copyright (c) 2015-2016 Advanced Micro Devices, Inc. All rights reserved.
|
|
# 2017-2018 Advanced Micro Devices, Inc. and
|
|
# Facebook Inc. All rights reserved.
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in
|
|
# all copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
# THE SOFTWARE.
|
|
"""
|
|
import argparse
|
|
import fnmatch
|
|
import re
|
|
import shutil
|
|
import sys
|
|
import os
|
|
|
|
from . import constants
|
|
from .cuda_to_hip_mappings import CUDA_TO_HIP_MAPPINGS
|
|
from .cuda_to_hip_mappings import MATH_TRANSPILATIONS
|
|
|
|
from typing import Dict, List, Iterator, Optional
|
|
from collections.abc import Mapping, Iterable
|
|
from enum import Enum
|
|
|
|
class CurrentState(Enum):
|
|
INITIALIZED = 1
|
|
DONE = 2
|
|
|
|
class HipifyResult:
|
|
def __init__(self, current_state, hipified_path):
|
|
self.current_state = current_state
|
|
self.hipified_path = hipified_path
|
|
self.status = ""
|
|
|
|
def __str__(self):
|
|
return ("HipifyResult:: current_state: {}, hipified_path : {}, status: {}".format(self.current_state,
|
|
self.hipified_path, self.status))
|
|
|
|
HipifyFinalResult = Dict[str, HipifyResult]
|
|
HIPIFY_C_BREADCRUMB = "// !!! This is a file automatically generated by hipify!!!\n"
|
|
HIPIFY_FINAL_RESULT: HipifyFinalResult = {}
|
|
|
|
# Hardcode the PyTorch template map
|
|
"""This dictionary provides the mapping from PyTorch kernel template types
|
|
to their actual types."""
|
|
PYTORCH_TEMPLATE_MAP = {"Dtype": "scalar_t", "T": "scalar_t"}
|
|
|
|
__all__ = ['InputError', 'openf', 'bcolors', 'GeneratedFileCleaner', 'match_extensions', 'matched_files_iter',
|
|
'preprocess_file_and_save_result', 'compute_stats', 'add_dim3', 'processKernelLaunches', 'find_closure_group',
|
|
'find_bracket_group', 'find_parentheses_group', 'replace_math_functions', 'hip_header_magic', 'replace_extern_shared',
|
|
'get_hip_file_path', 'is_out_of_place', 'is_pytorch_file', 'is_cusparse_file', 'is_special_file', 'is_caffe2_gpu_file',
|
|
'is_caffe2_gpu_file', 'Trie', 'preprocessor', 'file_specific_replacement', 'file_add_header',
|
|
'fix_static_global_kernels', 'extract_arguments', 'str2bool', 'CurrentState', 'HipifyResult', 'hipify']
|
|
|
|
|
|
class InputError(Exception):
|
|
# Exception raised for errors in the input.
|
|
|
|
def __init__(self, message):
|
|
super().__init__(message)
|
|
self.message = message
|
|
|
|
def __str__(self):
|
|
return f"Input error: {self.message}"
|
|
|
|
|
|
def openf(filename, mode):
|
|
return open(filename, mode, errors='ignore')
|
|
|
|
|
|
# Color coding for printing
|
|
class bcolors:
|
|
HEADER = '\033[95m'
|
|
OKBLUE = '\033[94m'
|
|
OKGREEN = '\033[92m'
|
|
WARNING = '\033[93m'
|
|
FAIL = '\033[91m'
|
|
ENDC = '\033[0m'
|
|
BOLD = '\033[1m'
|
|
UNDERLINE = '\033[4m'
|
|
|
|
|
|
# To the programmer, the output of hipify most likely are intermediates.
|
|
# This class allows users of hipify to ask for a cleanup by running the
|
|
# hipify and compilation in a with instantiating this context manager class
|
|
# with keep_intermediates=False.
|
|
# The main usecase is the cpp_extensions, specifically the load method.
|
|
# It is a good idea to keep intermediates (in case of errors or to
|
|
# not recompile unchanged files), but in cases where you don't want to
|
|
# keep them (e.g. in the CI), this can be used to remove files.
|
|
class GeneratedFileCleaner:
|
|
"""Context Manager to clean up generated files"""
|
|
def __init__(self, keep_intermediates=False):
|
|
self.keep_intermediates = keep_intermediates
|
|
self.files_to_clean = set()
|
|
self.dirs_to_clean = []
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def open(self, fn, *args, **kwargs):
|
|
if not os.path.exists(fn):
|
|
self.files_to_clean.add(os.path.abspath(fn))
|
|
return open(fn, *args, **kwargs)
|
|
|
|
def makedirs(self, dn, exist_ok=False):
|
|
parent, n = os.path.split(dn)
|
|
if not n:
|
|
parent, n = os.path.split(parent)
|
|
if parent and n and not os.path.exists(parent):
|
|
self.makedirs(parent, exist_ok=True)
|
|
if not os.path.isdir(dn) or not exist_ok:
|
|
os.mkdir(dn)
|
|
self.dirs_to_clean.append(os.path.abspath(dn))
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
if not self.keep_intermediates:
|
|
for f in self.files_to_clean:
|
|
os.unlink(f)
|
|
for d in self.dirs_to_clean[::-1]:
|
|
os.rmdir(d)
|
|
|
|
|
|
def match_extensions(filename: str, extensions: Iterable) -> bool:
|
|
"""Helper method to see if filename ends with certain extension"""
|
|
return any(filename.endswith(e) for e in extensions)
|
|
|
|
|
|
def _fnmatch(filepath, patterns):
|
|
return any(fnmatch.fnmatch(filepath, pattern) for pattern in patterns)
|
|
|
|
|
|
def matched_files_iter(
|
|
root_path: str,
|
|
includes: Iterable = (),
|
|
ignores: Iterable = (),
|
|
extensions: Iterable = (),
|
|
out_of_place_only: bool = False,
|
|
is_pytorch_extension: bool = False) -> Iterator[str]:
|
|
|
|
exact_matches = set(includes)
|
|
|
|
# This is a very rough heuristic; really, we want to avoid scanning
|
|
# any file which is not checked into source control, but this script
|
|
# needs to work even if you're in a Git or Hg checkout, so easier to
|
|
# just block the biggest time sinks that won't matter in the
|
|
# end.
|
|
for (abs_dirpath, dirs, filenames) in os.walk(root_path, topdown=True):
|
|
rel_dirpath = os.path.relpath(abs_dirpath, root_path)
|
|
if rel_dirpath == '.':
|
|
# Blah blah blah O(n) blah blah
|
|
if ".git" in dirs:
|
|
dirs.remove(".git")
|
|
if "build" in dirs:
|
|
dirs.remove("build")
|
|
if "third_party" in dirs:
|
|
dirs.remove("third_party")
|
|
dirs.append("third_party/nvfuser")
|
|
for filename in filenames:
|
|
filepath = os.path.join(abs_dirpath, filename)
|
|
rel_filepath = os.path.join(rel_dirpath, filename)
|
|
# We respect extensions, UNLESS you wrote the entire
|
|
# filename verbatim, in which case we always accept it
|
|
if (
|
|
_fnmatch(filepath, includes)
|
|
and (not _fnmatch(filepath, ignores))
|
|
and (match_extensions(filepath, extensions) or filepath in exact_matches)
|
|
):
|
|
if not is_pytorch_extension: # for pytorch extensions, consider all files
|
|
if not is_pytorch_file(rel_filepath) and not is_caffe2_gpu_file(rel_filepath):
|
|
continue
|
|
if out_of_place_only and not is_out_of_place(rel_filepath):
|
|
continue
|
|
yield filepath
|
|
|
|
|
|
def preprocess_file_and_save_result(
|
|
output_directory: str,
|
|
filepath: str,
|
|
all_files: Iterable,
|
|
header_include_dirs: Iterable,
|
|
stats: Dict[str, List],
|
|
hip_clang_launch: bool,
|
|
is_pytorch_extension: bool,
|
|
clean_ctx: GeneratedFileCleaner,
|
|
show_progress: bool) -> None:
|
|
fin_path = os.path.abspath(os.path.join(output_directory, filepath))
|
|
hipify_result = HipifyResult(current_state=CurrentState.INITIALIZED, hipified_path=fin_path)
|
|
HIPIFY_FINAL_RESULT[fin_path] = hipify_result
|
|
result = preprocessor(output_directory, filepath, all_files, header_include_dirs, stats,
|
|
hip_clang_launch, is_pytorch_extension, clean_ctx, show_progress)
|
|
|
|
# Show what happened
|
|
if show_progress and "ignored" not in result.status:
|
|
print(
|
|
fin_path, "->",
|
|
result.hipified_path, result.status, flush=True)
|
|
|
|
HIPIFY_FINAL_RESULT[fin_path] = result
|
|
|
|
|
|
def compute_stats(stats):
|
|
unsupported_calls = {cuda_call for (cuda_call, _filepath) in stats["unsupported_calls"]}
|
|
|
|
# Print the number of unsupported calls
|
|
print(f"Total number of unsupported CUDA function calls: {len(unsupported_calls):d}")
|
|
|
|
# Print the list of unsupported calls
|
|
print(", ".join(unsupported_calls))
|
|
|
|
# Print the number of kernel launches
|
|
print(f"\nTotal number of replaced kernel launches: {len(stats['kernel_launches']):d}")
|
|
|
|
|
|
def add_dim3(kernel_string, cuda_kernel):
|
|
'''adds dim3() to the second and third arguments in the kernel launch'''
|
|
count = 0
|
|
closure = 0
|
|
kernel_string = kernel_string.replace("<<<", "").replace(">>>", "")
|
|
arg_locs: List[Dict[str, int]] = [{} for _ in range(2)]
|
|
arg_locs[count]['start'] = 0
|
|
for ind, c in enumerate(kernel_string):
|
|
if count > 1:
|
|
break
|
|
if c == "(":
|
|
closure += 1
|
|
elif c == ")":
|
|
closure -= 1
|
|
if (c == "," or ind == len(kernel_string) - 1) and closure == 0:
|
|
arg_locs[count]['end'] = ind + (c != ",")
|
|
count += 1
|
|
if count < 2:
|
|
arg_locs[count]['start'] = ind + 1
|
|
|
|
first_arg_raw = kernel_string[arg_locs[0]['start']:arg_locs[0]['end'] + 1]
|
|
second_arg_raw = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']]
|
|
|
|
first_arg_clean = kernel_string[arg_locs[0]['start']:arg_locs[0]['end']].replace("\n", "").strip(" ")
|
|
second_arg_clean = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']].replace("\n", "").strip(" ")
|
|
|
|
first_arg_dim3 = f"dim3({first_arg_clean})"
|
|
second_arg_dim3 = f"dim3({second_arg_clean})"
|
|
|
|
first_arg_raw_dim3 = first_arg_raw.replace(first_arg_clean, first_arg_dim3)
|
|
second_arg_raw_dim3 = second_arg_raw.replace(second_arg_clean, second_arg_dim3)
|
|
cuda_kernel = cuda_kernel.replace(first_arg_raw + second_arg_raw, first_arg_raw_dim3 + second_arg_raw_dim3)
|
|
return cuda_kernel
|
|
|
|
|
|
RE_KERNEL_LAUNCH = re.compile(r'([ ]+)(detail?)::[ ]+\\\n[ ]+')
|
|
|
|
|
|
def processKernelLaunches(string, stats):
|
|
""" Replace the CUDA style Kernel launches with the HIP style kernel launches."""
|
|
# Concat the namespace with the kernel names. (Find cleaner way of doing this later).
|
|
string = RE_KERNEL_LAUNCH.sub(lambda inp: f"{inp.group(1)}{inp.group(2)}::", string)
|
|
|
|
def grab_method_and_template(in_kernel):
|
|
# The positions for relevant kernel components.
|
|
pos = {
|
|
"kernel_launch": {"start": in_kernel["start"], "end": in_kernel["end"]},
|
|
"kernel_name": {"start": -1, "end": -1},
|
|
"template": {"start": -1, "end": -1}
|
|
}
|
|
|
|
# Count for balancing template
|
|
count = {"<>": 0}
|
|
|
|
# Status for whether we are parsing a certain item.
|
|
START = 0
|
|
AT_TEMPLATE = 1
|
|
AFTER_TEMPLATE = 2
|
|
AT_KERNEL_NAME = 3
|
|
|
|
status = START
|
|
|
|
# Parse the string character by character
|
|
for i in range(pos["kernel_launch"]["start"] - 1, -1, -1):
|
|
char = string[i]
|
|
|
|
# Handle Templating Arguments
|
|
if status in (START, AT_TEMPLATE):
|
|
if char == ">":
|
|
if status == START:
|
|
status = AT_TEMPLATE
|
|
pos["template"]["end"] = i
|
|
count["<>"] += 1
|
|
|
|
if char == "<":
|
|
count["<>"] -= 1
|
|
if count["<>"] == 0 and (status == AT_TEMPLATE):
|
|
pos["template"]["start"] = i
|
|
status = AFTER_TEMPLATE
|
|
|
|
# Handle Kernel Name
|
|
if status != AT_TEMPLATE:
|
|
if string[i].isalnum() or string[i] in {'(', ')', '_', ':', '#'}:
|
|
if status != AT_KERNEL_NAME:
|
|
status = AT_KERNEL_NAME
|
|
pos["kernel_name"]["end"] = i
|
|
|
|
# Case: Kernel name starts the string.
|
|
if i == 0:
|
|
pos["kernel_name"]["start"] = 0
|
|
|
|
# Finished
|
|
return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])]
|
|
|
|
else:
|
|
# Potential ending point if we're already traversing a kernel's name.
|
|
if status == AT_KERNEL_NAME:
|
|
pos["kernel_name"]["start"] = i
|
|
|
|
# Finished
|
|
return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])]
|
|
|
|
def find_kernel_bounds(string):
|
|
"""Finds the starting and ending points for all kernel launches in the string."""
|
|
kernel_end = 0
|
|
kernel_positions = []
|
|
|
|
# Continue until we cannot find any more kernels anymore.
|
|
while string.find("<<<", kernel_end) != -1:
|
|
# Get kernel starting position (starting from the previous ending point)
|
|
kernel_start = string.find("<<<", kernel_end)
|
|
|
|
# Get kernel ending position (adjust end point past the >>>)
|
|
kernel_end = string.find(">>>", kernel_start) + 3
|
|
if kernel_end <= 0:
|
|
raise InputError("no kernel end found")
|
|
|
|
# Add to list of traversed kernels
|
|
kernel_positions.append({"start": kernel_start, "end": kernel_end,
|
|
"group": string[kernel_start: kernel_end]})
|
|
|
|
return kernel_positions
|
|
|
|
# Replace comments and string literals from the code so that find_kernel_bounds does not
|
|
# wrongly capture kernels in comments and string literals.
|
|
# This function replaces them with "x" to keep positions.
|
|
def mask_comments(string):
|
|
in_comment = ''
|
|
prev_c = ''
|
|
new_string = ''
|
|
for c in string:
|
|
if in_comment == '':
|
|
# Outside comments
|
|
if c == '/' and prev_c == '/':
|
|
in_comment = '//'
|
|
elif c == '*' and prev_c == '/':
|
|
in_comment = '/*'
|
|
elif c == '"' and prev_c != '\\' and prev_c != "'":
|
|
in_comment = '"'
|
|
elif in_comment == '//':
|
|
# In // xxx
|
|
if c == '\r' or c == '\n':
|
|
in_comment = ''
|
|
elif in_comment == '/*':
|
|
# In /* xxx */
|
|
if c == '/' and prev_c == '*':
|
|
in_comment = ''
|
|
elif in_comment == '"':
|
|
# In ""
|
|
if c == '"' and prev_c != '\\':
|
|
in_comment = ''
|
|
prev_c = c
|
|
if in_comment == '':
|
|
new_string += c
|
|
else:
|
|
new_string += 'x'
|
|
return new_string
|
|
|
|
# Grab positional ranges of all kernel launches
|
|
get_kernel_positions = list(find_kernel_bounds(mask_comments(string)))
|
|
output_string = string
|
|
|
|
# Replace each CUDA kernel with a HIP kernel.
|
|
for kernel in get_kernel_positions:
|
|
# Get kernel components
|
|
params = grab_method_and_template(kernel)
|
|
|
|
# Find parenthesis after kernel launch
|
|
parenthesis = string.find("(", kernel["end"])
|
|
|
|
# Extract cuda kernel
|
|
cuda_kernel = string[params[0]["start"]:parenthesis + 1]
|
|
kernel_string = string[kernel['start']:kernel['end']]
|
|
end_param_index = 0 if params[1]['end'] == -1 else 1
|
|
kernel_name_with_template = string[params[0]['start']:params[end_param_index]['end'] + 1]
|
|
cuda_kernel_dim3 = add_dim3(kernel_string, cuda_kernel)
|
|
# Keep number of kernel launch params consistent (grid dims, group dims, stream, dynamic shared size)
|
|
num_klp = len(extract_arguments(0, kernel["group"].replace("<<<", "(").replace(">>>", ")")))
|
|
|
|
hip_kernel = "hipLaunchKernelGGL(" + cuda_kernel_dim3[0:-1].replace(
|
|
">>>", ", 0" * (4 - num_klp) + ">>>").replace("<<<", ", ").replace(
|
|
">>>", ", ").replace(kernel_name_with_template, "(" + kernel_name_with_template + ")")
|
|
|
|
# Replace cuda kernel with hip kernel
|
|
output_string = output_string.replace(cuda_kernel, hip_kernel)
|
|
|
|
# Update the statistics
|
|
stats["kernel_launches"].append(hip_kernel)
|
|
|
|
return output_string
|
|
|
|
|
|
def find_closure_group(input_string, start, group):
|
|
"""Generalization for finding a balancing closure group
|
|
|
|
if group = ["(", ")"], then finds the first balanced parentheses.
|
|
if group = ["{", "}"], then finds the first balanced bracket.
|
|
|
|
Given an input string, a starting position in the input string, and the group type,
|
|
find_closure_group returns the positions of group[0] and group[1] as a tuple.
|
|
|
|
Example:
|
|
>>> find_closure_group("(hi)", 0, ["(", ")"])
|
|
(0, 3)
|
|
"""
|
|
|
|
inside_parenthesis = False
|
|
parens = 0
|
|
pos = start
|
|
p_start, p_end = -1, -1
|
|
|
|
while pos < len(input_string):
|
|
if input_string[pos] == group[0]:
|
|
if inside_parenthesis is False:
|
|
inside_parenthesis = True
|
|
parens = 1
|
|
p_start = pos
|
|
else:
|
|
parens += 1
|
|
elif input_string[pos] == group[1] and inside_parenthesis:
|
|
parens -= 1
|
|
|
|
if parens == 0:
|
|
p_end = pos
|
|
return p_start, p_end
|
|
|
|
pos += 1
|
|
return None, None
|
|
|
|
|
|
def find_bracket_group(input_string, start):
|
|
"""Finds the first balanced parantheses."""
|
|
return find_closure_group(input_string, start, group=["{", "}"])
|
|
|
|
|
|
def find_parentheses_group(input_string, start):
|
|
"""Finds the first balanced bracket."""
|
|
return find_closure_group(input_string, start, group=["(", ")"])
|
|
|
|
|
|
RE_ASSERT = re.compile(r"\bassert[ ]*\(")
|
|
|
|
|
|
def replace_math_functions(input_string):
|
|
"""FIXME: Temporarily replace std:: invocations of math functions
|
|
with non-std:: versions to prevent linker errors NOTE: This
|
|
can lead to correctness issues when running tests, since the
|
|
correct version of the math function (exp/expf) might not get
|
|
called. Plan is to remove this function once HIP supports
|
|
std:: math function calls inside device code
|
|
|
|
"""
|
|
output_string = input_string
|
|
for func in MATH_TRANSPILATIONS:
|
|
output_string = output_string.replace(fr'{func}(', f'{MATH_TRANSPILATIONS[func]}(')
|
|
|
|
return output_string
|
|
|
|
|
|
RE_SYNCTHREADS = re.compile(r":?:?\b(__syncthreads)\b(\w*\()")
|
|
|
|
|
|
def hip_header_magic(input_string):
|
|
"""If the file makes kernel builtin calls and does not include the cuda_runtime.h header,
|
|
then automatically add an #include to match the "magic" includes provided by NVCC.
|
|
TODO:
|
|
Update logic to ignore cases where the cuda_runtime.h is included by another file.
|
|
"""
|
|
|
|
# Copy the input.
|
|
output_string = input_string
|
|
|
|
# Check if one of the following headers is already included.
|
|
headers = ["hip/hip_runtime.h", "hip/hip_runtime_api.h"]
|
|
if any(re.search(fr'#include ("{ext}"|<{ext}>)', output_string) for ext in headers):
|
|
return output_string
|
|
|
|
# Rough logic to detect if we're inside device code
|
|
hasDeviceLogic: int
|
|
hasDeviceLogic = "hipLaunchKernelGGL" in output_string
|
|
hasDeviceLogic += "__global__" in output_string
|
|
hasDeviceLogic += "__shared__" in output_string
|
|
hasDeviceLogic += RE_SYNCTHREADS.search(output_string) is not None
|
|
|
|
# If device logic found, provide the necessary header.
|
|
if hasDeviceLogic:
|
|
output_string = '#include "hip/hip_runtime.h"\n' + input_string
|
|
|
|
return output_string
|
|
|
|
|
|
RE_EXTERN_SHARED = re.compile(r"extern\s+([\w\(\)]+)?\s*__shared__\s+([\w:<>\s]+)\s+(\w+)\s*\[\s*\]\s*;")
|
|
|
|
|
|
def replace_extern_shared(input_string):
|
|
"""Match extern __shared__ type foo[]; syntax and use HIP_DYNAMIC_SHARED() MACRO instead.
|
|
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#__shared__
|
|
Example:
|
|
"extern __shared__ char smemChar[];" => "HIP_DYNAMIC_SHARED( char, smemChar)"
|
|
"extern __shared__ unsigned char smem[];" => "HIP_DYNAMIC_SHARED( unsigned char, my_smem)"
|
|
"""
|
|
output_string = input_string
|
|
output_string = RE_EXTERN_SHARED.sub(
|
|
lambda inp: f"HIP_DYNAMIC_SHARED({inp.group(1) or ''} {inp.group(2)}, {inp.group(3)})", output_string)
|
|
|
|
return output_string
|
|
|
|
|
|
def get_hip_file_path(rel_filepath, is_pytorch_extension=False):
|
|
"""
|
|
Returns the new name of the hipified file
|
|
"""
|
|
# At the moment, some PyTorch source files are HIPified in place. The predicate
|
|
# is_out_of_place tells us if this is the case or not.
|
|
assert not os.path.isabs(rel_filepath)
|
|
if not is_pytorch_extension and not is_out_of_place(rel_filepath):
|
|
return rel_filepath
|
|
|
|
dirpath, filename = os.path.split(rel_filepath)
|
|
root, ext = os.path.splitext(filename)
|
|
|
|
# Here's the plan:
|
|
#
|
|
# In general, we need to disambiguate the HIPified filename so that
|
|
# it gets a different name from the original filename, so
|
|
# that we don't overwrite the original file
|
|
#
|
|
# There's a lot of different naming conventions across PyTorch
|
|
# and Caffe2, but the general recipe is to convert occurrences
|
|
# of cuda/gpu to hip, and add hip if there are no occurrences
|
|
# of cuda/gpu anywhere.
|
|
#
|
|
# Concretely, we do the following:
|
|
#
|
|
# - If there is a directory component named "cuda", replace
|
|
# it with "hip", AND
|
|
#
|
|
# - If the file name contains "CUDA", replace it with "HIP", AND
|
|
#
|
|
# - ALWAYS replace '.cu' with '.hip', because those files
|
|
# contain CUDA kernels that needs to be hipified and processed with
|
|
# hip compiler
|
|
#
|
|
# - If we are not hipifying a PyTorch extension, and the parent
|
|
# directory name did not change as a result of the above
|
|
# transformations, insert "hip" in the file path
|
|
# as the direct parent folder of the file
|
|
#
|
|
# - If we are hipifying a PyTorch extension, and the parent directory
|
|
# name as well as the filename (incl. extension) did not change as
|
|
# a result of the above transformations, insert "_hip" in the filename
|
|
#
|
|
# This isn't set in stone; we might adjust this to support other
|
|
# naming conventions.
|
|
|
|
if ext == '.cu':
|
|
ext = '.hip'
|
|
|
|
orig_filename = filename
|
|
orig_dirpath = dirpath
|
|
|
|
dirpath = dirpath.replace('cuda', 'hip')
|
|
dirpath = dirpath.replace('CUDA', 'HIP')
|
|
dirpath = dirpath.replace('THC', 'THH')
|
|
|
|
root = root.replace('cuda', 'hip')
|
|
root = root.replace('CUDA', 'HIP')
|
|
# Special case to handle caffe2/core/THCCachingAllocator
|
|
if dirpath != "caffe2/core":
|
|
root = root.replace('THC', 'THH')
|
|
|
|
if not is_pytorch_extension and dirpath == orig_dirpath:
|
|
dirpath = os.path.join(dirpath, 'hip')
|
|
|
|
if is_pytorch_extension and dirpath == orig_dirpath and (root + ext) == orig_filename:
|
|
root = root + "_hip"
|
|
|
|
return os.path.join(dirpath, root + ext)
|
|
|
|
|
|
def is_out_of_place(rel_filepath):
|
|
assert not os.path.isabs(rel_filepath)
|
|
if rel_filepath.startswith("torch/"):
|
|
return False
|
|
if rel_filepath.startswith("third_party/nvfuser/"):
|
|
return False
|
|
if rel_filepath.startswith("tools/autograd/templates/"):
|
|
return False
|
|
return True
|
|
|
|
|
|
# Keep this synchronized with includes/ignores in build_amd.py
|
|
def is_pytorch_file(rel_filepath):
|
|
assert not os.path.isabs(rel_filepath)
|
|
if rel_filepath.startswith("aten/"):
|
|
if rel_filepath.startswith("aten/src/ATen/core/"):
|
|
return False
|
|
return True
|
|
if rel_filepath.startswith("torch/"):
|
|
return True
|
|
if rel_filepath.startswith("third_party/nvfuser/"):
|
|
return True
|
|
if rel_filepath.startswith("tools/autograd/templates/"):
|
|
return True
|
|
return False
|
|
|
|
|
|
def is_cusparse_file(rel_filepath):
|
|
if is_pytorch_file(rel_filepath):
|
|
return "sparse" in rel_filepath.lower()
|
|
return False
|
|
|
|
|
|
def is_special_file(rel_filepath):
|
|
if is_pytorch_file(rel_filepath):
|
|
if "sparse" in rel_filepath.lower():
|
|
return True
|
|
elif "linalg" in rel_filepath.lower():
|
|
if "batchlinearalgebralibblas" in rel_filepath.lower():
|
|
return False # don't use "special" mappings for this specific linalg cublas file
|
|
return True
|
|
return False
|
|
|
|
def is_caffe2_gpu_file(rel_filepath):
|
|
assert not os.path.isabs(rel_filepath)
|
|
if rel_filepath.startswith("c10/cuda"):
|
|
return True
|
|
filename = os.path.basename(rel_filepath)
|
|
_, ext = os.path.splitext(filename)
|
|
return ('gpu' in filename or ext in ['.cu', '.cuh']) and ('cudnn' not in filename)
|
|
|
|
class TrieNode:
|
|
"""A Trie node whose children are represented as a directory of char: TrieNode.
|
|
A special char '' represents end of word
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.children = {}
|
|
|
|
class Trie:
|
|
"""Creates a Trie out of a list of words. The trie can be exported to a Regex pattern.
|
|
The corresponding Regex should match much faster than a simple Regex union."""
|
|
|
|
def __init__(self):
|
|
"""Initialize the trie with an empty root node."""
|
|
self.root = TrieNode()
|
|
|
|
def add(self, word):
|
|
"""Add a word to the Trie. """
|
|
node = self.root
|
|
|
|
for char in word:
|
|
node.children.setdefault(char, TrieNode())
|
|
node = node.children[char]
|
|
node.children[''] = True # Mark the end of the word
|
|
|
|
def dump(self):
|
|
"""Return the root node of Trie. """
|
|
return self.root
|
|
|
|
def quote(self, char):
|
|
""" Escape a char for regex. """
|
|
return re.escape(char)
|
|
|
|
def search(self, word):
|
|
"""Search whether word is present in the Trie.
|
|
Returns True if yes, else return False"""
|
|
node = self.root
|
|
for char in word:
|
|
if char in node.children:
|
|
node = node.children[char]
|
|
else:
|
|
return False
|
|
|
|
# make sure to check the end-of-word marker present
|
|
return '' in node.children
|
|
|
|
def _pattern(self, root):
|
|
"""Convert a Trie into a regular expression pattern"""
|
|
node = root
|
|
|
|
if "" in node.children and len(node.children.keys()) == 1:
|
|
return None
|
|
|
|
alt = [] # store alternative patterns
|
|
cc = [] # store char to char classes
|
|
q = 0 # for node representing the end of word
|
|
for char in sorted(node.children.keys()):
|
|
if isinstance(node.children[char], TrieNode):
|
|
try:
|
|
recurse = self._pattern(node.children[char])
|
|
alt.append(self.quote(char) + recurse)
|
|
except Exception:
|
|
cc.append(self.quote(char))
|
|
else:
|
|
q = 1
|
|
cconly = not len(alt) > 0
|
|
|
|
if len(cc) > 0:
|
|
if len(cc) == 1:
|
|
alt.append(cc[0])
|
|
else:
|
|
alt.append('[' + ''.join(cc) + ']')
|
|
|
|
if len(alt) == 1:
|
|
result = alt[0]
|
|
else:
|
|
result = "(?:" + "|".join(alt) + ")"
|
|
|
|
if q:
|
|
if cconly:
|
|
result += "?"
|
|
else:
|
|
result = f"(?:{result})?"
|
|
return result
|
|
|
|
def pattern(self):
|
|
"""Export the Trie to a regex pattern."""
|
|
return self._pattern(self.root)
|
|
|
|
def export_to_regex(self):
|
|
"""Export the Trie to a regex pattern."""
|
|
return self._pattern(self.root)
|
|
|
|
CAFFE2_TRIE = Trie()
|
|
CAFFE2_MAP = {}
|
|
PYTORCH_TRIE = Trie()
|
|
PYTORCH_MAP: Dict[str, object] = {}
|
|
|
|
# In PyTorch, we map cuBLAS->rocBLAS and cuSPARSE->hipSPARSE. Note the prefix, roc versus hip.
|
|
# The 'hip' APIs offer a more direct CUDA-friendly mapping, but calling rocBLAS directly has better performance.
|
|
# Unfortunately, the roc* types and hip* types differ, i.e., rocblas_float_complex versus hipComplex.
|
|
# In the case of SPARSE, we must use the hip types for complex instead of the roc types,
|
|
# but the pytorch mappings assume roc. Therefore, we create a new SPARSE mapping that has a higher priority.
|
|
# Its mappings will trigger first, and only when a miss occurs will the lower-priority pytorch mapping take place.
|
|
# When a file contains "sparse" in the filename, a mapping marked with API_SPARSE is preferred over other choices.
|
|
# Similarly, "linalg" files require rocBLAS -> hipSOLVER so they also need special handling.
|
|
PYTORCH_SPECIAL_MAP = {}
|
|
|
|
for mapping in CUDA_TO_HIP_MAPPINGS:
|
|
assert isinstance(mapping, Mapping)
|
|
for src, value in mapping.items():
|
|
dst = value[0]
|
|
meta_data = value[1:]
|
|
if constants.API_CAFFE2 not in meta_data:
|
|
PYTORCH_TRIE.add(src)
|
|
# if src is already in PYTORCH_MAP and dst belongs to API_SPECIAL
|
|
# do not overwrite PYTORCH_MAP, store dst separately
|
|
if constants.API_SPECIAL in meta_data and PYTORCH_MAP.get(src, ""):
|
|
PYTORCH_SPECIAL_MAP[src] = dst
|
|
else:
|
|
PYTORCH_MAP[src] = dst
|
|
if constants.API_PYTORCH not in meta_data and constants.API_SPECIAL not in meta_data:
|
|
CAFFE2_TRIE.add(src)
|
|
CAFFE2_MAP[src] = dst
|
|
RE_CAFFE2_PREPROCESSOR = re.compile(CAFFE2_TRIE.export_to_regex())
|
|
RE_PYTORCH_PREPROCESSOR = re.compile(fr'(?<=\W)({PYTORCH_TRIE.export_to_regex()})(?=\W)')
|
|
|
|
RE_QUOTE_HEADER = re.compile(r'#include "([^"]+)"')
|
|
RE_ANGLE_HEADER = re.compile(r'#include <([^>]+)>')
|
|
RE_THC_GENERIC_FILE = re.compile(r'#define THC_GENERIC_FILE "([^"]+)"')
|
|
RE_CU_SUFFIX = re.compile(r'\.cu\b') # be careful not to pick up .cuh
|
|
|
|
"""
|
|
Returns a HipifyResult object with the following details:
|
|
"hipified_path" : absolute path of hipified source file
|
|
"status" : "ok" if hipified file was written out
|
|
"skipped" if an identical hipified file already existed or hipified file couldn't be written out
|
|
"ignored" if the source file was a hipified file itself or not meant to be hipified
|
|
"current_state" : CurrentState.INITIALIZED if source file is first ready to be hipified
|
|
CurrentState.DONE if source file is done with hipification process
|
|
"""
|
|
|
|
|
|
def preprocessor(
|
|
output_directory: str,
|
|
filepath: str,
|
|
all_files: Iterable,
|
|
header_include_dirs: Iterable,
|
|
stats: Dict[str, List],
|
|
hip_clang_launch: bool,
|
|
is_pytorch_extension: bool,
|
|
clean_ctx: GeneratedFileCleaner,
|
|
show_progress: bool) -> HipifyResult:
|
|
""" Executes the CUDA -> HIP conversion on the specified file. """
|
|
fin_path = os.path.abspath(os.path.join(output_directory, filepath))
|
|
hipify_result = HIPIFY_FINAL_RESULT[fin_path]
|
|
if filepath not in all_files:
|
|
hipify_result.hipified_path = None
|
|
hipify_result.status = "[ignored, not to be hipified]"
|
|
hipify_result.current_state = CurrentState.DONE
|
|
return hipify_result
|
|
|
|
rel_filepath = os.path.relpath(filepath, output_directory)
|
|
|
|
with open(fin_path, encoding='utf-8') as fin:
|
|
if fin.readline() == HIPIFY_C_BREADCRUMB:
|
|
hipify_result.hipified_path = None
|
|
hipify_result.status = "[ignored, input is hipified output]"
|
|
hipify_result.current_state = CurrentState.DONE
|
|
return hipify_result
|
|
fin.seek(0)
|
|
output_source = fin.read()
|
|
|
|
orig_output_source = output_source
|
|
|
|
# get_hip_file_path needs a relative path to work correctly
|
|
fout_path = os.path.abspath(os.path.join(output_directory, get_hip_file_path(rel_filepath, is_pytorch_extension)))
|
|
if not os.path.exists(os.path.dirname(fout_path)):
|
|
clean_ctx.makedirs(os.path.dirname(fout_path))
|
|
|
|
# unsupported_calls statistics reporting is broken atm
|
|
def pt_repl(m):
|
|
return PYTORCH_MAP[m.group(0)]
|
|
|
|
def pt_special_repl(m):
|
|
# checks SPECIAL map first, and if a miss occurs, falls back to pytorch mappings
|
|
return PYTORCH_SPECIAL_MAP.get(m.group(0), pt_repl(m))
|
|
|
|
|
|
if is_pytorch_extension:
|
|
output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_repl, output_source)
|
|
else:
|
|
if is_special_file(rel_filepath):
|
|
output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_special_repl, output_source)
|
|
elif is_pytorch_file(rel_filepath):
|
|
output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_repl, output_source)
|
|
else:
|
|
def c2_repl(m):
|
|
return CAFFE2_MAP[m.group(0)]
|
|
output_source = RE_CAFFE2_PREPROCESSOR.sub(c2_repl, output_source)
|
|
|
|
# Header rewrites
|
|
def mk_repl(templ, include_current_dir=True):
|
|
def repl(m):
|
|
f = m.group(1)
|
|
dirpath, filename = os.path.split(f)
|
|
if (
|
|
f.startswith(("ATen/cuda",
|
|
"ATen/native/cuda",
|
|
"ATen/native/nested/cuda",
|
|
"ATen/native/quantized/cuda",
|
|
"ATen/native/sparse/cuda",
|
|
"ATen/native/transformers/cuda",
|
|
"THC/")) or
|
|
(f.startswith("THC") and not f.startswith("THCP"))
|
|
):
|
|
return templ.format(get_hip_file_path(m.group(1), is_pytorch_extension))
|
|
# if filename is one of the files being hipified for this extension
|
|
if (is_pytorch_extension and any(s.endswith(filename) for s in all_files)):
|
|
header_dir = None
|
|
header_filepath = None
|
|
# If include_current_dir True, look first in same dir as the including source file
|
|
if include_current_dir:
|
|
header_dir_to_check = os.path.dirname(fin_path)
|
|
header_path_to_check = os.path.abspath(os.path.join(header_dir_to_check, f))
|
|
if os.path.exists(header_path_to_check):
|
|
header_dir = header_dir_to_check
|
|
header_filepath = header_path_to_check
|
|
# If not found, look in include dirs one by one and first match wins
|
|
if header_filepath is None:
|
|
for header_include_dir in header_include_dirs:
|
|
header_dir_to_check = os.path.join(output_directory, header_include_dir)
|
|
header_path_to_check = os.path.abspath(os.path.join(header_dir_to_check, f))
|
|
if os.path.exists(header_path_to_check):
|
|
header_dir = header_dir_to_check
|
|
header_filepath = header_path_to_check
|
|
# If header file not found, keep as is
|
|
if header_filepath is None:
|
|
return m.group(0)
|
|
# Hipify header file first if needed
|
|
if header_filepath not in HIPIFY_FINAL_RESULT:
|
|
preprocess_file_and_save_result(output_directory,
|
|
header_filepath,
|
|
all_files, header_include_dirs, stats, hip_clang_launch,
|
|
is_pytorch_extension, clean_ctx, show_progress)
|
|
elif header_filepath in HIPIFY_FINAL_RESULT:
|
|
header_result = HIPIFY_FINAL_RESULT[header_filepath]
|
|
if header_result.current_state == CurrentState.INITIALIZED:
|
|
# get_hip_file_path needs a relative path to work correctly
|
|
header_rel_path = os.path.relpath(header_filepath, output_directory)
|
|
header_fout_path = os.path.abspath(os.path.join(output_directory,
|
|
get_hip_file_path(header_rel_path, is_pytorch_extension)))
|
|
header_result.hipified_path = header_fout_path
|
|
HIPIFY_FINAL_RESULT[header_filepath] = header_result
|
|
return templ.format(os.path.relpath(header_fout_path if header_fout_path is not None
|
|
else header_filepath, header_dir))
|
|
hipified_header_filepath = HIPIFY_FINAL_RESULT[header_filepath].hipified_path
|
|
return templ.format(os.path.relpath(hipified_header_filepath if hipified_header_filepath is not None
|
|
else header_filepath, header_dir))
|
|
|
|
return m.group(0)
|
|
return repl
|
|
output_source = RE_QUOTE_HEADER.sub(mk_repl('#include "{0}"', True), output_source)
|
|
output_source = RE_ANGLE_HEADER.sub(mk_repl('#include <{0}>', False), output_source)
|
|
output_source = RE_THC_GENERIC_FILE.sub(mk_repl('#define THC_GENERIC_FILE "{0}"'), output_source)
|
|
|
|
# CMakeLists.txt rewrites
|
|
if filepath.endswith('CMakeLists.txt'):
|
|
output_source = output_source.replace('CUDA', 'HIP')
|
|
output_source = output_source.replace('THC', 'THH')
|
|
output_source = RE_CU_SUFFIX.sub('.hip', output_source)
|
|
|
|
# Perform Kernel Launch Replacements
|
|
if not hip_clang_launch:
|
|
output_source = processKernelLaunches(output_source, stats)
|
|
|
|
# Replace std:: with non-std:: versions
|
|
if (filepath.endswith((".cu", ".cuh"))) and "PowKernel" not in filepath:
|
|
output_source = replace_math_functions(output_source)
|
|
|
|
# Include header if device code is contained.
|
|
output_source = hip_header_magic(output_source)
|
|
|
|
# Replace the extern __shared__
|
|
# NOTE: No longer needed after transition from hcc to hipclang.
|
|
# output_source = replace_extern_shared(output_source)
|
|
|
|
# Don't write out identical hipified files for extensions if dirpath has not changed
|
|
if (
|
|
is_pytorch_extension
|
|
and orig_output_source == output_source
|
|
and os.path.dirname(fin_path) == os.path.dirname(fout_path)
|
|
):
|
|
hipify_result.hipified_path = fin_path
|
|
hipify_result.status = "[skipped, no changes]"
|
|
hipify_result.current_state = CurrentState.DONE
|
|
return hipify_result
|
|
|
|
# Add hipify breadcrumb for C-style files to avoid re-hipification
|
|
if fin_path != fout_path and match_extensions(fin_path, (".cu", ".cuh", ".c", ".cc", ".cpp", ".h", ".hpp")):
|
|
output_source = HIPIFY_C_BREADCRUMB + output_source
|
|
|
|
do_write = True
|
|
if os.path.exists(fout_path):
|
|
with open(fout_path, encoding='utf-8') as fout_old:
|
|
do_write = fout_old.read() != output_source
|
|
if do_write:
|
|
try:
|
|
with clean_ctx.open(fout_path, 'w', encoding='utf-8') as fout:
|
|
fout.write(output_source)
|
|
hipify_result.hipified_path = fout_path
|
|
hipify_result.status = "[ok]"
|
|
hipify_result.current_state = CurrentState.DONE
|
|
return hipify_result
|
|
except PermissionError as e:
|
|
print(f"{bcolors.WARNING}Failed to save {fout_path} with \"{e.strerror}\", leaving {fin_path} unchanged.{bcolors.ENDC}",
|
|
file=sys.stderr)
|
|
hipify_result.hipified_path = fin_path
|
|
hipify_result.status = "[skipped, no permissions]"
|
|
hipify_result.current_state = CurrentState.DONE
|
|
return hipify_result
|
|
else:
|
|
hipify_result.hipified_path = fout_path
|
|
hipify_result.status = "[skipped, already hipified]"
|
|
hipify_result.current_state = CurrentState.DONE
|
|
return hipify_result
|
|
|
|
def file_specific_replacement(filepath, search_string, replace_string, strict=False):
|
|
with openf(filepath, "r+") as f:
|
|
contents = f.read()
|
|
if strict:
|
|
contents = re.sub(fr'\b({re.escape(search_string)})\b', lambda x: replace_string, contents)
|
|
else:
|
|
contents = contents.replace(search_string, replace_string)
|
|
f.seek(0)
|
|
f.write(contents)
|
|
f.truncate()
|
|
|
|
|
|
def file_add_header(filepath, header):
|
|
with openf(filepath, "r+") as f:
|
|
contents = f.read()
|
|
if header[0] != "<" and header[-1] != ">":
|
|
header = f'"{header}"'
|
|
contents = (f'#include {header} \n') + contents
|
|
f.seek(0)
|
|
f.write(contents)
|
|
f.truncate()
|
|
|
|
|
|
def fix_static_global_kernels(in_txt):
|
|
"""Static global kernels in HIP results in a compilation error."""
|
|
in_txt = in_txt.replace(" __global__ static", "__global__")
|
|
return in_txt
|
|
|
|
|
|
RE_INCLUDE = re.compile(r"#include .*\n")
|
|
|
|
|
|
def extract_arguments(start, string):
|
|
""" Return the list of arguments in the upcoming function parameter closure.
|
|
Example:
|
|
string (input): '(blocks, threads, 0, THCState_getCurrentStream(state))'
|
|
arguments (output):
|
|
'[{'start': 1, 'end': 7},
|
|
{'start': 8, 'end': 16},
|
|
{'start': 17, 'end': 19},
|
|
{'start': 20, 'end': 53}]'
|
|
"""
|
|
|
|
arguments = []
|
|
closures = {
|
|
"<": 0,
|
|
"(": 0
|
|
}
|
|
current_position = start
|
|
argument_start_pos = current_position + 1
|
|
|
|
# Search for final parenthesis
|
|
while current_position < len(string):
|
|
if string[current_position] == "(":
|
|
closures["("] += 1
|
|
elif string[current_position] == ")":
|
|
closures["("] -= 1
|
|
elif string[current_position] == "<":
|
|
closures["<"] += 1
|
|
elif string[current_position] == ">" and string[current_position - 1] != "-" and closures["<"] > 0:
|
|
closures["<"] -= 1
|
|
|
|
# Finished all arguments
|
|
if closures["("] == 0 and closures["<"] == 0:
|
|
# Add final argument
|
|
arguments.append({"start": argument_start_pos, "end": current_position})
|
|
break
|
|
|
|
# Finished current argument
|
|
if closures["("] == 1 and closures["<"] == 0 and string[current_position] == ",":
|
|
arguments.append({"start": argument_start_pos, "end": current_position})
|
|
argument_start_pos = current_position + 1
|
|
|
|
current_position += 1
|
|
|
|
return arguments
|
|
|
|
|
|
def str2bool(v):
|
|
"""ArgumentParser doesn't support type=bool. Thus, this helper method will convert
|
|
from possible string types to True / False."""
|
|
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
|
return True
|
|
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
|
|
return False
|
|
else:
|
|
raise argparse.ArgumentTypeError('Boolean value expected.')
|
|
|
|
|
|
def hipify(
|
|
project_directory: str,
|
|
show_detailed: bool = False,
|
|
extensions: Iterable = (".cu", ".cuh", ".c", ".cc", ".cpp", ".h", ".in", ".hpp"),
|
|
header_extensions: Iterable = (".cuh", ".h", ".hpp"),
|
|
output_directory: str = "",
|
|
header_include_dirs: Iterable = (),
|
|
includes: Iterable = ('*',),
|
|
extra_files: Iterable = (),
|
|
out_of_place_only: bool = False,
|
|
ignores: Iterable = (),
|
|
show_progress: bool = True,
|
|
hip_clang_launch: bool = False,
|
|
is_pytorch_extension: bool = False,
|
|
hipify_extra_files_only: bool = False,
|
|
clean_ctx: Optional[GeneratedFileCleaner] = None
|
|
) -> HipifyFinalResult:
|
|
if project_directory == "":
|
|
project_directory = os.getcwd()
|
|
|
|
# Verify the project directory exists.
|
|
if not os.path.exists(project_directory):
|
|
print("The project folder specified does not exist.")
|
|
sys.exit(1)
|
|
|
|
# If no output directory, provide a default one.
|
|
if not output_directory:
|
|
project_directory.rstrip("/")
|
|
output_directory = project_directory + "_amd"
|
|
|
|
if project_directory != output_directory:
|
|
includes = [include.replace(project_directory, output_directory) for include in includes]
|
|
ignores = [ignore.replace(project_directory, output_directory) for ignore in ignores]
|
|
|
|
# Copy from project directory to output directory if not done already.
|
|
if not os.path.exists(output_directory):
|
|
shutil.copytree(project_directory, output_directory)
|
|
|
|
all_files = list(matched_files_iter(output_directory, includes=includes,
|
|
ignores=ignores, extensions=extensions,
|
|
out_of_place_only=out_of_place_only,
|
|
is_pytorch_extension=is_pytorch_extension))
|
|
all_files_set = set(all_files)
|
|
for f in extra_files:
|
|
if not os.path.isabs(f):
|
|
f = os.path.join(output_directory, f)
|
|
if f not in all_files_set:
|
|
all_files.append(f)
|
|
|
|
# List all files in header_include_paths to ensure they are hipified
|
|
from pathlib import Path
|
|
for header_include_dir in header_include_dirs:
|
|
if os.path.isabs(header_include_dir):
|
|
header_include_dir_path = Path(header_include_dir)
|
|
else:
|
|
header_include_dir_path = Path(os.path.join(output_directory, header_include_dir))
|
|
for path in header_include_dir_path.rglob('*'):
|
|
if (
|
|
path.is_file()
|
|
and _fnmatch(str(path), includes)
|
|
and (not _fnmatch(str(path), ignores))
|
|
and match_extensions(path.name, header_extensions)
|
|
):
|
|
all_files.append(str(path))
|
|
|
|
if clean_ctx is None:
|
|
clean_ctx = GeneratedFileCleaner(keep_intermediates=True)
|
|
|
|
# Preprocessing statistics.
|
|
stats: Dict[str, List] = {"unsupported_calls": [], "kernel_launches": []}
|
|
|
|
for filepath in (all_files if not hipify_extra_files_only else extra_files):
|
|
preprocess_file_and_save_result(output_directory, filepath, all_files, header_include_dirs,
|
|
stats, hip_clang_launch, is_pytorch_extension, clean_ctx, show_progress)
|
|
|
|
print(bcolors.OKGREEN + "Successfully preprocessed all matching files." + bcolors.ENDC, file=sys.stderr)
|
|
|
|
# Show detailed summary
|
|
if show_detailed:
|
|
compute_stats(stats)
|
|
|
|
return HIPIFY_FINAL_RESULT
|