1093 lines
57 KiB
Python
1093 lines
57 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Generation configuration class and utilities."""
|
||
|
|
||
|
import copy
|
||
|
import json
|
||
|
import os
|
||
|
import warnings
|
||
|
from typing import TYPE_CHECKING, Any, Dict, Optional, Union
|
||
|
|
||
|
from .. import __version__
|
||
|
from ..configuration_utils import PretrainedConfig
|
||
|
from ..utils import (
|
||
|
GENERATION_CONFIG_NAME,
|
||
|
ExplicitEnum,
|
||
|
PushToHubMixin,
|
||
|
cached_file,
|
||
|
download_url,
|
||
|
extract_commit_hash,
|
||
|
is_remote_url,
|
||
|
logging,
|
||
|
)
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ..modeling_utils import PreTrainedModel
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
METADATA_FIELDS = ("_from_model_config", "_commit_hash", "_original_object_hash", "transformers_version")
|
||
|
|
||
|
|
||
|
class GenerationMode(ExplicitEnum):
|
||
|
"""
|
||
|
Possible generation modes, downstream of the [`~generation.GenerationMixin.generate`] method.
|
||
|
"""
|
||
|
|
||
|
# Non-beam methods
|
||
|
CONTRASTIVE_SEARCH = "contrastive_search"
|
||
|
GREEDY_SEARCH = "greedy_search"
|
||
|
SAMPLE = "sample"
|
||
|
ASSISTED_GENERATION = "assisted_generation"
|
||
|
# Beam methods
|
||
|
BEAM_SEARCH = "beam_search"
|
||
|
BEAM_SAMPLE = "beam_sample"
|
||
|
CONSTRAINED_BEAM_SEARCH = "constrained_beam_search"
|
||
|
GROUP_BEAM_SEARCH = "group_beam_search"
|
||
|
|
||
|
|
||
|
class GenerationConfig(PushToHubMixin):
|
||
|
# no-format
|
||
|
r"""
|
||
|
Class that holds a configuration for a generation task. A `generate` call supports the following generation methods
|
||
|
for text-decoder, text-to-text, speech-to-text, and vision-to-text models:
|
||
|
|
||
|
- *greedy decoding* by calling [`~generation.GenerationMixin._greedy_search`] if `num_beams=1` and
|
||
|
`do_sample=False`
|
||
|
- *contrastive search* by calling [`~generation.GenerationMixin._contrastive_search`] if `penalty_alpha>0.`
|
||
|
and `top_k>1`
|
||
|
- *multinomial sampling* by calling [`~generation.GenerationMixin._sample`] if `num_beams=1` and
|
||
|
`do_sample=True`
|
||
|
- *beam-search decoding* by calling [`~generation.GenerationMixin._beam_search`] if `num_beams>1` and
|
||
|
`do_sample=False`
|
||
|
- *beam-search multinomial sampling* by calling [`~generation.GenerationMixin._beam_sample`] if
|
||
|
`num_beams>1` and `do_sample=True`
|
||
|
- *diverse beam-search decoding* by calling [`~generation.GenerationMixin._group_beam_search`], if
|
||
|
`num_beams>1` and `num_beam_groups>1`
|
||
|
- *constrained beam-search decoding* by calling [`~generation.GenerationMixin._constrained_beam_search`], if
|
||
|
`constraints!=None` or `force_words_ids!=None`
|
||
|
- *assisted decoding* by calling [`~generation.GenerationMixin._assisted_decoding`], if
|
||
|
`assistant_model` or `prompt_lookup_num_tokens` is passed to `.generate()`
|
||
|
|
||
|
You do not need to call any of the above methods directly. Pass custom parameter values to '.generate()'. To learn
|
||
|
more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
A large number of these flags control the logits or the stopping criteria of the generation. Make sure you check
|
||
|
the [generate-related classes](https://huggingface.co/docs/transformers/internal/generation_utils) for a full
|
||
|
description of the possible manipulations, as well as examples of their usage.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Arg:
|
||
|
> Parameters that control the length of the output
|
||
|
|
||
|
max_length (`int`, *optional*, defaults to 20):
|
||
|
The maximum length the generated tokens can have. Corresponds to the length of the input prompt +
|
||
|
`max_new_tokens`. Its effect is overridden by `max_new_tokens`, if also set.
|
||
|
max_new_tokens (`int`, *optional*):
|
||
|
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
|
||
|
min_length (`int`, *optional*, defaults to 0):
|
||
|
The minimum length of the sequence to be generated. Corresponds to the length of the input prompt +
|
||
|
`min_new_tokens`. Its effect is overridden by `min_new_tokens`, if also set.
|
||
|
min_new_tokens (`int`, *optional*):
|
||
|
The minimum numbers of tokens to generate, ignoring the number of tokens in the prompt.
|
||
|
early_stopping (`bool` or `str`, *optional*, defaults to `False`):
|
||
|
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
|
||
|
`True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
|
||
|
heuristic is applied and the generation stops when is it very unlikely to find better candidates;
|
||
|
`"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
|
||
|
beam search algorithm).
|
||
|
max_time(`float`, *optional*):
|
||
|
The maximum amount of time you allow the computation to run for in seconds. generation will still finish
|
||
|
the current pass after allocated time has been passed.
|
||
|
|
||
|
> Parameters that control the generation strategy used
|
||
|
|
||
|
do_sample (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to use sampling ; use greedy decoding otherwise.
|
||
|
num_beams (`int`, *optional*, defaults to 1):
|
||
|
Number of beams for beam search. 1 means no beam search.
|
||
|
num_beam_groups (`int`, *optional*, defaults to 1):
|
||
|
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
|
||
|
[this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
|
||
|
penalty_alpha (`float`, *optional*):
|
||
|
The values balance the model confidence and the degeneration penalty in contrastive search decoding.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
|
||
|
speed up decoding.
|
||
|
|
||
|
> Parameters for manipulation of the model output logits
|
||
|
|
||
|
temperature (`float`, *optional*, defaults to 1.0):
|
||
|
The value used to modulate the next token probabilities.
|
||
|
top_k (`int`, *optional*, defaults to 50):
|
||
|
The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
||
|
top_p (`float`, *optional*, defaults to 1.0):
|
||
|
If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to
|
||
|
`top_p` or higher are kept for generation.
|
||
|
typical_p (`float`, *optional*, defaults to 1.0):
|
||
|
Local typicality measures how similar the conditional probability of predicting a target token next is to
|
||
|
the expected conditional probability of predicting a random token next, given the partial text already
|
||
|
generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that
|
||
|
add up to `typical_p` or higher are kept for generation. See [this
|
||
|
paper](https://arxiv.org/pdf/2202.00666.pdf) for more details.
|
||
|
epsilon_cutoff (`float`, *optional*, defaults to 0.0):
|
||
|
If set to float strictly between 0 and 1, only tokens with a conditional probability greater than
|
||
|
`epsilon_cutoff` will be sampled. In the paper, suggested values range from 3e-4 to 9e-4, depending on the
|
||
|
size of the model. See [Truncation Sampling as Language Model
|
||
|
Desmoothing](https://arxiv.org/abs/2210.15191) for more details.
|
||
|
eta_cutoff (`float`, *optional*, defaults to 0.0):
|
||
|
Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to float strictly between
|
||
|
0 and 1, a token is only considered if it is greater than either `eta_cutoff` or `sqrt(eta_cutoff) *
|
||
|
exp(-entropy(softmax(next_token_logits)))`. The latter term is intuitively the expected next token
|
||
|
probability, scaled by `sqrt(eta_cutoff)`. In the paper, suggested values range from 3e-4 to 2e-3,
|
||
|
depending on the size of the model. See [Truncation Sampling as Language Model
|
||
|
Desmoothing](https://arxiv.org/abs/2210.15191) for more details.
|
||
|
diversity_penalty (`float`, *optional*, defaults to 0.0):
|
||
|
This value is subtracted from a beam's score if it generates a token same as any beam from other group at a
|
||
|
particular time. Note that `diversity_penalty` is only effective if `group beam search` is enabled.
|
||
|
repetition_penalty (`float`, *optional*, defaults to 1.0):
|
||
|
The parameter for repetition penalty. 1.0 means no penalty. See [this
|
||
|
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
|
||
|
encoder_repetition_penalty (`float`, *optional*, defaults to 1.0):
|
||
|
The paramater for encoder_repetition_penalty. An exponential penalty on sequences that are not in the
|
||
|
original input. 1.0 means no penalty.
|
||
|
length_penalty (`float`, *optional*, defaults to 1.0):
|
||
|
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
||
|
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
||
|
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
||
|
`length_penalty` < 0.0 encourages shorter sequences.
|
||
|
no_repeat_ngram_size (`int`, *optional*, defaults to 0):
|
||
|
If set to int > 0, all ngrams of that size can only occur once.
|
||
|
bad_words_ids(`List[List[int]]`, *optional*):
|
||
|
List of list of token ids that are not allowed to be generated. Check
|
||
|
[`~generation.NoBadWordsLogitsProcessor`] for further documentation and examples.
|
||
|
force_words_ids(`List[List[int]]` or `List[List[List[int]]]`, *optional*):
|
||
|
List of token ids that must be generated. If given a `List[List[int]]`, this is treated as a simple list of
|
||
|
words that must be included, the opposite to `bad_words_ids`. If given `List[List[List[int]]]`, this
|
||
|
triggers a [disjunctive constraint](https://github.com/huggingface/transformers/issues/14081), where one
|
||
|
can allow different forms of each word.
|
||
|
renormalize_logits (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to renormalize the logits after applying all the logits processors or warpers (including the custom
|
||
|
ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the score logits
|
||
|
are normalized but some logit processors or warpers break the normalization.
|
||
|
constraints (`List[Constraint]`, *optional*):
|
||
|
Custom constraints that can be added to the generation to ensure that the output will contain the use of
|
||
|
certain tokens as defined by `Constraint` objects, in the most sensible way possible.
|
||
|
forced_bos_token_id (`int`, *optional*, defaults to `model.config.forced_bos_token_id`):
|
||
|
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for
|
||
|
multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target
|
||
|
language token.
|
||
|
forced_eos_token_id (`Union[int, List[int]]`, *optional*, defaults to `model.config.forced_eos_token_id`):
|
||
|
The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a
|
||
|
list to set multiple *end-of-sequence* tokens.
|
||
|
remove_invalid_values (`bool`, *optional*, defaults to `model.config.remove_invalid_values`):
|
||
|
Whether to remove possible *nan* and *inf* outputs of the model to prevent the generation method to crash.
|
||
|
Note that using `remove_invalid_values` can slow down generation.
|
||
|
exponential_decay_length_penalty (`tuple(int, float)`, *optional*):
|
||
|
This Tuple adds an exponentially increasing length penalty, after a certain amount of tokens have been
|
||
|
generated. The tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where
|
||
|
penalty starts and `decay_factor` represents the factor of exponential decay
|
||
|
suppress_tokens (`List[int]`, *optional*):
|
||
|
A list of tokens that will be suppressed at generation. The `SupressTokens` logit processor will set their
|
||
|
log probs to `-inf` so that they are not sampled.
|
||
|
begin_suppress_tokens (`List[int]`, *optional*):
|
||
|
A list of tokens that will be suppressed at the beginning of the generation. The `SupressBeginTokens` logit
|
||
|
processor will set their log probs to `-inf` so that they are not sampled.
|
||
|
forced_decoder_ids (`List[List[int]]`, *optional*):
|
||
|
A list of pairs of integers which indicates a mapping from generation indices to token indices that will be
|
||
|
forced before sampling. For example, `[[1, 123]]` means the second generated token will always be a token
|
||
|
of index 123.
|
||
|
sequence_bias (`Dict[Tuple[int], float]`, *optional*)):
|
||
|
Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the
|
||
|
sequence being selected, while negative biases do the opposite. Check
|
||
|
[`~generation.SequenceBiasLogitsProcessor`] for further documentation and examples.
|
||
|
guidance_scale (`float`, *optional*):
|
||
|
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale > 1`.
|
||
|
Higher guidance scale encourages the model to generate samples that are more closely linked to the input
|
||
|
prompt, usually at the expense of poorer quality.
|
||
|
low_memory (`bool`, *optional*):
|
||
|
Switch to sequential beam search and sequential topk for contrastive search to reduce peak memory.
|
||
|
Used with beam search and contrastive search.
|
||
|
|
||
|
|
||
|
> Parameters that define the output variables of `generate`
|
||
|
|
||
|
num_return_sequences(`int`, *optional*, defaults to 1):
|
||
|
The number of independently computed returned sequences for each element in the batch.
|
||
|
output_attentions (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more details.
|
||
|
output_hidden_states (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more details.
|
||
|
output_scores (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
|
||
|
output_logits (`bool`, *optional*):
|
||
|
Whether or not to return the unprocessed prediction logit scores. See `logits` under returned tensors for
|
||
|
more details.
|
||
|
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
|
||
|
> Special tokens that can be used at generation time
|
||
|
|
||
|
pad_token_id (`int`, *optional*):
|
||
|
The id of the *padding* token.
|
||
|
bos_token_id (`int`, *optional*):
|
||
|
The id of the *beginning-of-sequence* token.
|
||
|
eos_token_id (`Union[int, List[int]]`, *optional*):
|
||
|
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
||
|
|
||
|
> Generation parameters exclusive to encoder-decoder models
|
||
|
|
||
|
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0):
|
||
|
If set to int > 0, all ngrams of that size that occur in the `encoder_input_ids` cannot occur in the
|
||
|
`decoder_input_ids`.
|
||
|
decoder_start_token_id (`Union[int, List[int]]`, *optional*):
|
||
|
If an encoder-decoder model starts decoding with a different token than *bos*, the id of that token or a list of length
|
||
|
`batch_size`. Indicating a list enables different start ids for each element in the batch
|
||
|
(e.g. multilingual models with different target languages in one batch)
|
||
|
|
||
|
|
||
|
> Generation parameters exclusive to [assistant generation](https://arxiv.org/abs/2211.17192)
|
||
|
|
||
|
num_assistant_tokens (`int`, *optional*, defaults to 5):
|
||
|
Defines the number of _speculative tokens_ that shall be generated by the assistant model before being
|
||
|
checked by the target model at each iteration. Higher values for `num_assistant_tokens` make the generation
|
||
|
more _speculative_ : If the assistant model is performant larger speed-ups can be reached, if the assistant
|
||
|
model requires lots of corrections, lower speed-ups are reached.
|
||
|
|
||
|
num_assistant_tokens_schedule (`str`, *optional*, defaults to `"heuristic"`):
|
||
|
Defines the schedule at which max assistant tokens shall be changed during inference.
|
||
|
- `"heuristic"`: When all speculative tokens are correct, increase `num_assistant_tokens` by 2 else
|
||
|
reduce by 1. `num_assistant_tokens` value is persistent over multiple generation calls with the same assistant model.
|
||
|
- `"heuristic_transient"`: Same as `"heuristic"` but `num_assistant_tokens` is reset to its initial value after each generation call.
|
||
|
- `"constant"`: `num_assistant_tokens` stays unchanged during generation
|
||
|
|
||
|
prompt_lookup_num_tokens (`int`, *optional*, default to `None`):
|
||
|
The number of tokens to be output as candidate tokens.
|
||
|
|
||
|
max_matching_ngram_size (`int`, *optional*, default to `None`):
|
||
|
The maximum ngram size to be considered for matching in the prompt. Default to 2 if not provided.
|
||
|
|
||
|
> Parameters specific to the caching mechanism:
|
||
|
|
||
|
cache_implementation (`str`, *optional*, default to `None`):
|
||
|
Cache class that should be used when generating.
|
||
|
|
||
|
|
||
|
> Wild card
|
||
|
|
||
|
generation_kwargs:
|
||
|
Additional generation kwargs will be forwarded to the `generate` function of the model. Kwargs that are not
|
||
|
present in `generate`'s signature will be used in the model forward pass.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
# Parameters that control the length of the output
|
||
|
self.max_length = kwargs.pop("max_length", 20)
|
||
|
self.max_new_tokens = kwargs.pop("max_new_tokens", None)
|
||
|
self.min_length = kwargs.pop("min_length", 0)
|
||
|
self.min_new_tokens = kwargs.pop("min_new_tokens", None)
|
||
|
self.early_stopping = kwargs.pop("early_stopping", False)
|
||
|
self.max_time = kwargs.pop("max_time", None)
|
||
|
|
||
|
# Parameters that control the generation strategy used
|
||
|
self.do_sample = kwargs.pop("do_sample", False)
|
||
|
self.num_beams = kwargs.pop("num_beams", 1)
|
||
|
self.num_beam_groups = kwargs.pop("num_beam_groups", 1)
|
||
|
self.penalty_alpha = kwargs.pop("penalty_alpha", None)
|
||
|
self.use_cache = kwargs.pop("use_cache", True)
|
||
|
|
||
|
# Parameters for manipulation of the model output logits
|
||
|
self.temperature = kwargs.pop("temperature", 1.0)
|
||
|
self.top_k = kwargs.pop("top_k", 50)
|
||
|
self.top_p = kwargs.pop("top_p", 1.0)
|
||
|
self.typical_p = kwargs.pop("typical_p", 1.0)
|
||
|
self.epsilon_cutoff = kwargs.pop("epsilon_cutoff", 0.0)
|
||
|
self.eta_cutoff = kwargs.pop("eta_cutoff", 0.0)
|
||
|
self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0)
|
||
|
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
|
||
|
self.encoder_repetition_penalty = kwargs.pop("encoder_repetition_penalty", 1.0)
|
||
|
self.length_penalty = kwargs.pop("length_penalty", 1.0)
|
||
|
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
|
||
|
self.bad_words_ids = kwargs.pop("bad_words_ids", None)
|
||
|
self.force_words_ids = kwargs.pop("force_words_ids", None)
|
||
|
self.renormalize_logits = kwargs.pop("renormalize_logits", False)
|
||
|
self.constraints = kwargs.pop("constraints", None)
|
||
|
self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None)
|
||
|
self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None)
|
||
|
self.remove_invalid_values = kwargs.pop("remove_invalid_values", False)
|
||
|
self.exponential_decay_length_penalty = kwargs.pop("exponential_decay_length_penalty", None)
|
||
|
self.suppress_tokens = kwargs.pop("suppress_tokens", None)
|
||
|
self.begin_suppress_tokens = kwargs.pop("begin_suppress_tokens", None)
|
||
|
self.forced_decoder_ids = kwargs.pop("forced_decoder_ids", None)
|
||
|
self.sequence_bias = kwargs.pop("sequence_bias", None)
|
||
|
self.guidance_scale = kwargs.pop("guidance_scale", None)
|
||
|
self.low_memory = kwargs.pop("low_memory", None)
|
||
|
|
||
|
# Parameters that define the output variables of `generate`
|
||
|
self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
|
||
|
self.output_attentions = kwargs.pop("output_attentions", False)
|
||
|
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
|
||
|
self.output_scores = kwargs.pop("output_scores", False)
|
||
|
self.output_logits = kwargs.pop("output_logits", None)
|
||
|
self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False)
|
||
|
|
||
|
# Special tokens that can be used at generation time
|
||
|
self.pad_token_id = kwargs.pop("pad_token_id", None)
|
||
|
self.bos_token_id = kwargs.pop("bos_token_id", None)
|
||
|
self.eos_token_id = kwargs.pop("eos_token_id", None)
|
||
|
|
||
|
# Generation parameters exclusive to encoder-decoder models
|
||
|
self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0)
|
||
|
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
|
||
|
|
||
|
# Assistant generation
|
||
|
self.num_assistant_tokens = kwargs.pop("num_assistant_tokens", 5)
|
||
|
self.num_assistant_tokens_schedule = kwargs.pop("num_assistant_tokens_schedule", "heuristic")
|
||
|
|
||
|
# Cache implementation
|
||
|
self.cache_implementation = kwargs.pop("cache_implementation", None)
|
||
|
|
||
|
# Prompt lookup decoding
|
||
|
self.prompt_lookup_num_tokens = kwargs.pop("prompt_lookup_num_tokens", None)
|
||
|
self.max_matching_ngram_size = kwargs.pop("max_matching_ngram_size", None)
|
||
|
|
||
|
# Wild card
|
||
|
self.generation_kwargs = kwargs.pop("generation_kwargs", {})
|
||
|
|
||
|
# The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the hub
|
||
|
# interface.
|
||
|
self._from_model_config = kwargs.pop("_from_model_config", False)
|
||
|
self._commit_hash = kwargs.pop("_commit_hash", None)
|
||
|
self.transformers_version = kwargs.pop("transformers_version", __version__)
|
||
|
|
||
|
# Additional attributes without default values
|
||
|
if not self._from_model_config:
|
||
|
# we don't want to copy values from the model config if we're initializing a `GenerationConfig` from a
|
||
|
# model's default configuration file
|
||
|
for key, value in kwargs.items():
|
||
|
try:
|
||
|
setattr(self, key, value)
|
||
|
except AttributeError as err:
|
||
|
logger.error(f"Can't set {key} with value {value} for {self}")
|
||
|
raise err
|
||
|
|
||
|
# Validate the values of the attributes
|
||
|
self.validate(is_init=True)
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash(self.to_json_string(ignore_metadata=True))
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, GenerationConfig):
|
||
|
return False
|
||
|
|
||
|
self_without_metadata = self.to_json_string(use_diff=False, ignore_metadata=True)
|
||
|
other_without_metadata = other.to_json_string(use_diff=False, ignore_metadata=True)
|
||
|
return self_without_metadata == other_without_metadata
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"{self.__class__.__name__} {self.to_json_string(ignore_metadata=True)}"
|
||
|
|
||
|
def get_generation_mode(self, assistant_model: Optional["PreTrainedModel"] = None) -> GenerationMode:
|
||
|
"""
|
||
|
Returns the generation mode triggered by the [`GenerationConfig`] instance.
|
||
|
|
||
|
Arg:
|
||
|
assistant_model (`PreTrainedModel`, *optional*):
|
||
|
The assistant model to be used for assisted generation. If set, the generation mode will be
|
||
|
assisted generation.
|
||
|
|
||
|
Returns:
|
||
|
`GenerationMode`: The generation mode triggered by the instance.
|
||
|
"""
|
||
|
# TODO joao: find out a way of not depending on external fields (e.g. `assistant_model`), then make this a
|
||
|
# property and part of the `__repr__`
|
||
|
if self.constraints is not None or self.force_words_ids is not None:
|
||
|
generation_mode = GenerationMode.CONSTRAINED_BEAM_SEARCH
|
||
|
elif self.num_beams == 1:
|
||
|
if self.do_sample is False:
|
||
|
if (
|
||
|
self.top_k is not None
|
||
|
and self.top_k > 1
|
||
|
and self.penalty_alpha is not None
|
||
|
and self.penalty_alpha > 0
|
||
|
):
|
||
|
generation_mode = GenerationMode.CONTRASTIVE_SEARCH
|
||
|
else:
|
||
|
generation_mode = GenerationMode.GREEDY_SEARCH
|
||
|
else:
|
||
|
generation_mode = GenerationMode.SAMPLE
|
||
|
else:
|
||
|
if self.num_beam_groups > 1:
|
||
|
generation_mode = GenerationMode.GROUP_BEAM_SEARCH
|
||
|
elif self.do_sample is True:
|
||
|
generation_mode = GenerationMode.BEAM_SAMPLE
|
||
|
else:
|
||
|
generation_mode = GenerationMode.BEAM_SEARCH
|
||
|
|
||
|
# Assisted generation may extend some generation modes
|
||
|
if assistant_model is not None or self.prompt_lookup_num_tokens is not None:
|
||
|
if generation_mode in ("greedy_search", "sample"):
|
||
|
generation_mode = GenerationMode.ASSISTED_GENERATION
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"You've set `assistant_model`, which triggers assisted generate. Currently, assisted generate "
|
||
|
"is only supported with Greedy Search and Sample."
|
||
|
)
|
||
|
return generation_mode
|
||
|
|
||
|
def validate(self, is_init=False):
|
||
|
"""
|
||
|
Validates the values of the attributes of the [`GenerationConfig`] instance. Raises exceptions in the presence
|
||
|
of parameterization that can be detected as incorrect from the configuration instance alone.
|
||
|
|
||
|
Note that some parameters not validated here are best validated at generate runtime, as they may depend on
|
||
|
other inputs and/or the model, such as parameters related to the generation length.
|
||
|
|
||
|
Arg:
|
||
|
is_init (`bool`, *optional*, defaults to `False`):
|
||
|
Whether the validation is performed during the initialization of the instance.
|
||
|
"""
|
||
|
|
||
|
# Validation of individual attributes
|
||
|
if self.early_stopping not in {True, False, "never"}:
|
||
|
raise ValueError(f"`early_stopping` must be a boolean or 'never', but is {self.early_stopping}.")
|
||
|
if self.max_new_tokens is not None and self.max_new_tokens <= 0:
|
||
|
raise ValueError(f"`max_new_tokens` must be greater than 0, but is {self.max_new_tokens}.")
|
||
|
|
||
|
# Validation of attribute relations:
|
||
|
fix_location = ""
|
||
|
if is_init:
|
||
|
fix_location = (
|
||
|
" This was detected when initializing the generation config instance, which means the corresponding "
|
||
|
"file may hold incorrect parameterization and should be fixed."
|
||
|
)
|
||
|
|
||
|
# 1. detect sampling-only parameterization when not in sampling mode
|
||
|
if self.do_sample is False:
|
||
|
greedy_wrong_parameter_msg = (
|
||
|
"`do_sample` is set to `False`. However, `{flag_name}` is set to `{flag_value}` -- this flag is only "
|
||
|
"used in sample-based generation modes. You should set `do_sample=True` or unset `{flag_name}`."
|
||
|
+ fix_location
|
||
|
)
|
||
|
if self.temperature is not None and self.temperature != 1.0:
|
||
|
warnings.warn(
|
||
|
greedy_wrong_parameter_msg.format(flag_name="temperature", flag_value=self.temperature),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if self.top_p is not None and self.top_p != 1.0:
|
||
|
warnings.warn(
|
||
|
greedy_wrong_parameter_msg.format(flag_name="top_p", flag_value=self.top_p),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if self.typical_p is not None and self.typical_p != 1.0:
|
||
|
warnings.warn(
|
||
|
greedy_wrong_parameter_msg.format(flag_name="typical_p", flag_value=self.typical_p),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if (
|
||
|
self.top_k is not None and self.top_k != 50 and self.penalty_alpha is None
|
||
|
): # contrastive search uses top_k
|
||
|
warnings.warn(
|
||
|
greedy_wrong_parameter_msg.format(flag_name="top_k", flag_value=self.top_k),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if self.epsilon_cutoff is not None and self.epsilon_cutoff != 0.0:
|
||
|
warnings.warn(
|
||
|
greedy_wrong_parameter_msg.format(flag_name="epsilon_cutoff", flag_value=self.epsilon_cutoff),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if self.eta_cutoff is not None and self.eta_cutoff != 0.0:
|
||
|
warnings.warn(
|
||
|
greedy_wrong_parameter_msg.format(flag_name="eta_cutoff", flag_value=self.eta_cutoff),
|
||
|
UserWarning,
|
||
|
)
|
||
|
|
||
|
# 2. detect beam-only parameterization when not in beam mode
|
||
|
if self.num_beams is None:
|
||
|
warnings.warn("`num_beams` is set to None - defaulting to 1.", UserWarning)
|
||
|
self.num_beams = 1
|
||
|
|
||
|
if self.num_beams == 1:
|
||
|
single_beam_wrong_parameter_msg = (
|
||
|
"`num_beams` is set to 1. However, `{flag_name}` is set to `{flag_value}` -- this flag is only used "
|
||
|
"in beam-based generation modes. You should set `num_beams>1` or unset `{flag_name}`." + fix_location
|
||
|
)
|
||
|
if self.early_stopping is not False:
|
||
|
warnings.warn(
|
||
|
single_beam_wrong_parameter_msg.format(flag_name="early_stopping", flag_value=self.early_stopping),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if self.num_beam_groups is not None and self.num_beam_groups != 1:
|
||
|
warnings.warn(
|
||
|
single_beam_wrong_parameter_msg.format(
|
||
|
flag_name="num_beam_groups", flag_value=self.num_beam_groups
|
||
|
),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if self.diversity_penalty is not None and self.diversity_penalty != 0.0:
|
||
|
warnings.warn(
|
||
|
single_beam_wrong_parameter_msg.format(
|
||
|
flag_name="diversity_penalty", flag_value=self.diversity_penalty
|
||
|
),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if self.length_penalty is not None and self.length_penalty != 1.0:
|
||
|
warnings.warn(
|
||
|
single_beam_wrong_parameter_msg.format(flag_name="length_penalty", flag_value=self.length_penalty),
|
||
|
UserWarning,
|
||
|
)
|
||
|
if self.constraints is not None:
|
||
|
warnings.warn(
|
||
|
single_beam_wrong_parameter_msg.format(flag_name="constraints", flag_value=self.constraints),
|
||
|
UserWarning,
|
||
|
)
|
||
|
|
||
|
# 3. detect incorrect paramaterization specific to advanced beam modes
|
||
|
else:
|
||
|
# constrained beam search
|
||
|
if self.constraints is not None or self.force_words_ids is not None:
|
||
|
constrained_wrong_parameter_msg = (
|
||
|
"one of `constraints`, `force_words_ids` is not `None`, triggering constrained beam search. However, "
|
||
|
"`{flag_name}` is set to `{flag_value}`, which is incompatible with this generation mode. Set "
|
||
|
"`constraints` and `force_words_ids` to `None` or unset `{flag_name}` to continue." + fix_location
|
||
|
)
|
||
|
if self.do_sample is True:
|
||
|
raise ValueError(
|
||
|
constrained_wrong_parameter_msg.format(flag_name="do_sample", flag_value=self.do_sample)
|
||
|
)
|
||
|
if self.num_beam_groups is not None and self.num_beam_groups != 1:
|
||
|
raise ValueError(
|
||
|
constrained_wrong_parameter_msg.format(
|
||
|
flag_name="num_beam_groups", flag_value=self.num_beam_groups
|
||
|
)
|
||
|
)
|
||
|
# group beam search
|
||
|
if self.diversity_penalty != 0.0 or self.num_beam_groups != 1:
|
||
|
group_error_prefix = (
|
||
|
"`diversity_penalty` is not 0.0 or `num_beam_groups` is not 1, triggering group beam search. In "
|
||
|
"this generation mode, "
|
||
|
)
|
||
|
if self.do_sample is True:
|
||
|
raise ValueError(group_error_prefix + "`do_sample` must be set to `False`")
|
||
|
if self.num_beams % self.num_beam_groups != 0:
|
||
|
raise ValueError(group_error_prefix + "`num_beams` should be divisible by `num_beam_groups`")
|
||
|
if self.diversity_penalty == 0.0:
|
||
|
raise ValueError(
|
||
|
group_error_prefix
|
||
|
+ "`diversity_penalty` should be greater than `0.0`, otherwise your groups will be identical."
|
||
|
)
|
||
|
|
||
|
# 4. check `num_return_sequences`
|
||
|
if self.num_return_sequences != 1:
|
||
|
if self.num_beams == 1:
|
||
|
if self.do_sample is False:
|
||
|
raise ValueError(
|
||
|
"Greedy methods without beam search do not support `num_return_sequences` different than 1 "
|
||
|
f"(got {self.num_return_sequences})."
|
||
|
)
|
||
|
elif self.num_return_sequences > self.num_beams:
|
||
|
raise ValueError(
|
||
|
f"`num_return_sequences` ({self.num_return_sequences}) has to be smaller or equal to `num_beams` "
|
||
|
f"({self.num_beams})."
|
||
|
)
|
||
|
|
||
|
# 5. check common issue: passing `generate` arguments inside the generation config
|
||
|
generate_arguments = (
|
||
|
"logits_processor",
|
||
|
"stopping_criteria",
|
||
|
"prefix_allowed_tokens_fn",
|
||
|
"synced_gpus",
|
||
|
"assistant_model",
|
||
|
"streamer",
|
||
|
"negative_prompt_ids",
|
||
|
"negative_prompt_attention_mask",
|
||
|
)
|
||
|
for arg in generate_arguments:
|
||
|
if hasattr(self, arg):
|
||
|
raise ValueError(
|
||
|
f"Argument `{arg}` is not a valid argument of `GenerationConfig`. It should be passed to "
|
||
|
"`generate()` (or a pipeline) directly."
|
||
|
)
|
||
|
|
||
|
def save_pretrained(
|
||
|
self,
|
||
|
save_directory: Union[str, os.PathLike],
|
||
|
config_file_name: Optional[Union[str, os.PathLike]] = None,
|
||
|
push_to_hub: bool = False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
r"""
|
||
|
Save a generation configuration object to the directory `save_directory`, so that it can be re-loaded using the
|
||
|
[`~GenerationConfig.from_pretrained`] class method.
|
||
|
|
||
|
Args:
|
||
|
save_directory (`str` or `os.PathLike`):
|
||
|
Directory where the configuration JSON file will be saved (will be created if it does not exist).
|
||
|
config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"generation_config.json"`):
|
||
|
Name of the generation configuration JSON file to be saved in `save_directory`.
|
||
|
push_to_hub (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
||
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
||
|
namespace).
|
||
|
kwargs (`Dict[str, Any]`, *optional*):
|
||
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
||
|
"""
|
||
|
|
||
|
# At save time, validate the instance -- if any warning/exception is thrown, we refuse to save the instance.
|
||
|
# This strictness is enforced to prevent bad configurations from being saved and re-used.
|
||
|
try:
|
||
|
with warnings.catch_warnings(record=True) as caught_warnings:
|
||
|
self.validate()
|
||
|
if len(caught_warnings) > 0:
|
||
|
raise ValueError(str([w.message for w in caught_warnings]))
|
||
|
except ValueError as exc:
|
||
|
raise ValueError(
|
||
|
"The generation config instance is invalid -- `.validate()` throws warnings and/or exceptions. "
|
||
|
"Fix these issues to save the configuration.\n\nThrown during validation:\n" + str(exc)
|
||
|
)
|
||
|
|
||
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
||
|
|
||
|
if use_auth_token is not None:
|
||
|
warnings.warn(
|
||
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if kwargs.get("token", None) is not None:
|
||
|
raise ValueError(
|
||
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
||
|
)
|
||
|
kwargs["token"] = use_auth_token
|
||
|
|
||
|
config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME
|
||
|
|
||
|
if os.path.isfile(save_directory):
|
||
|
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
||
|
|
||
|
os.makedirs(save_directory, exist_ok=True)
|
||
|
|
||
|
if push_to_hub:
|
||
|
commit_message = kwargs.pop("commit_message", None)
|
||
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
||
|
repo_id = self._create_repo(repo_id, **kwargs)
|
||
|
files_timestamps = self._get_files_timestamps(save_directory)
|
||
|
|
||
|
output_config_file = os.path.join(save_directory, config_file_name)
|
||
|
|
||
|
self.to_json_file(output_config_file, use_diff=True)
|
||
|
logger.info(f"Configuration saved in {output_config_file}")
|
||
|
|
||
|
if push_to_hub:
|
||
|
self._upload_modified_files(
|
||
|
save_directory,
|
||
|
repo_id,
|
||
|
files_timestamps,
|
||
|
commit_message=commit_message,
|
||
|
token=kwargs.get("token"),
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(
|
||
|
cls,
|
||
|
pretrained_model_name: Union[str, os.PathLike],
|
||
|
config_file_name: Optional[Union[str, os.PathLike]] = None,
|
||
|
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
||
|
force_download: bool = False,
|
||
|
local_files_only: bool = False,
|
||
|
token: Optional[Union[str, bool]] = None,
|
||
|
revision: str = "main",
|
||
|
**kwargs,
|
||
|
) -> "GenerationConfig":
|
||
|
r"""
|
||
|
Instantiate a [`GenerationConfig`] from a generation configuration file.
|
||
|
|
||
|
Args:
|
||
|
pretrained_model_name (`str` or `os.PathLike`):
|
||
|
This can be either:
|
||
|
|
||
|
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
||
|
huggingface.co.
|
||
|
- a path to a *directory* containing a configuration file saved using the
|
||
|
[`~GenerationConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
|
||
|
config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"generation_config.json"`):
|
||
|
Name of the generation configuration JSON file to be loaded from `pretrained_model_name`.
|
||
|
cache_dir (`str` or `os.PathLike`, *optional*):
|
||
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
||
|
standard cache should not be used.
|
||
|
force_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to force to (re-)download the configuration files and override the cached versions if
|
||
|
they exist.
|
||
|
resume_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
||
|
exists.
|
||
|
proxies (`Dict[str, str]`, *optional*):
|
||
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
||
|
token (`str` or `bool`, *optional*):
|
||
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
||
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
||
|
revision (`str`, *optional*, defaults to `"main"`):
|
||
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
||
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
||
|
identifier allowed by git.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
||
|
If `False`, then this function returns just the final configuration object.
|
||
|
|
||
|
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
|
||
|
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
|
||
|
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
|
||
|
subfolder (`str`, *optional*, defaults to `""`):
|
||
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
||
|
specify the folder name here.
|
||
|
kwargs (`Dict[str, Any]`, *optional*):
|
||
|
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
|
||
|
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
|
||
|
by the `return_unused_kwargs` keyword parameter.
|
||
|
|
||
|
Returns:
|
||
|
[`GenerationConfig`]: The configuration object instantiated from this pretrained model.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import GenerationConfig
|
||
|
|
||
|
>>> # Download configuration from huggingface.co and cache.
|
||
|
>>> generation_config = GenerationConfig.from_pretrained("openai-community/gpt2")
|
||
|
|
||
|
>>> # E.g. config was saved using *save_pretrained('./test/saved_model/')*
|
||
|
>>> generation_config.save_pretrained("./test/saved_model/")
|
||
|
>>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/")
|
||
|
|
||
|
>>> # You can also specify configuration names to your generation configuration file
|
||
|
>>> generation_config.save_pretrained("./test/saved_model/", config_file_name="my_configuration.json")
|
||
|
>>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/", "my_configuration.json")
|
||
|
|
||
|
>>> # If you'd like to try a minor variation to an existing configuration, you can also pass generation
|
||
|
>>> # arguments to `.from_pretrained()`. Be mindful that typos and unused arguments will be ignored
|
||
|
>>> generation_config, unused_kwargs = GenerationConfig.from_pretrained(
|
||
|
... "openai-community/gpt2", top_k=1, foo=False, do_sample=True, return_unused_kwargs=True
|
||
|
... )
|
||
|
>>> generation_config.top_k
|
||
|
1
|
||
|
|
||
|
>>> unused_kwargs
|
||
|
{'foo': False}
|
||
|
```"""
|
||
|
config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME
|
||
|
|
||
|
resume_download = kwargs.pop("resume_download", False)
|
||
|
proxies = kwargs.pop("proxies", None)
|
||
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
||
|
subfolder = kwargs.pop("subfolder", "")
|
||
|
from_pipeline = kwargs.pop("_from_pipeline", None)
|
||
|
from_auto_class = kwargs.pop("_from_auto", False)
|
||
|
commit_hash = kwargs.pop("_commit_hash", None)
|
||
|
|
||
|
if use_auth_token is not None:
|
||
|
warnings.warn(
|
||
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if token is not None:
|
||
|
raise ValueError(
|
||
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
||
|
)
|
||
|
token = use_auth_token
|
||
|
|
||
|
user_agent = {"file_type": "config", "from_auto_class": from_auto_class}
|
||
|
if from_pipeline is not None:
|
||
|
user_agent["using_pipeline"] = from_pipeline
|
||
|
|
||
|
config_path = os.path.join(pretrained_model_name, config_file_name)
|
||
|
config_path = str(config_path)
|
||
|
|
||
|
is_local = os.path.exists(config_path)
|
||
|
if os.path.isfile(os.path.join(subfolder, config_path)):
|
||
|
# Special case when config_path is a local file
|
||
|
resolved_config_file = config_path
|
||
|
is_local = True
|
||
|
elif is_remote_url(config_path):
|
||
|
configuration_file = config_path
|
||
|
resolved_config_file = download_url(config_path)
|
||
|
else:
|
||
|
configuration_file = config_file_name
|
||
|
try:
|
||
|
# Load from local folder or from cache or download from model Hub and cache
|
||
|
resolved_config_file = cached_file(
|
||
|
pretrained_model_name,
|
||
|
configuration_file,
|
||
|
cache_dir=cache_dir,
|
||
|
force_download=force_download,
|
||
|
proxies=proxies,
|
||
|
resume_download=resume_download,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
user_agent=user_agent,
|
||
|
revision=revision,
|
||
|
subfolder=subfolder,
|
||
|
_commit_hash=commit_hash,
|
||
|
)
|
||
|
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
|
||
|
except EnvironmentError:
|
||
|
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
||
|
# the original exception.
|
||
|
raise
|
||
|
except Exception:
|
||
|
# For any other exception, we throw a generic error.
|
||
|
raise EnvironmentError(
|
||
|
f"Can't load the configuration of '{pretrained_model_name}'. If you were trying to load it"
|
||
|
" from 'https://huggingface.co/models', make sure you don't have a local directory with the same"
|
||
|
f" name. Otherwise, make sure '{pretrained_model_name}' is the correct path to a directory"
|
||
|
f" containing a {configuration_file} file"
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
# Load config dict
|
||
|
config_dict = cls._dict_from_json_file(resolved_config_file)
|
||
|
config_dict["_commit_hash"] = commit_hash
|
||
|
except (json.JSONDecodeError, UnicodeDecodeError):
|
||
|
raise EnvironmentError(
|
||
|
f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file."
|
||
|
)
|
||
|
|
||
|
if is_local:
|
||
|
logger.info(f"loading configuration file {resolved_config_file}")
|
||
|
else:
|
||
|
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")
|
||
|
|
||
|
if kwargs.get("return_unused_kwargs") is True:
|
||
|
config, unused_kwargs = cls.from_dict(config_dict, **kwargs)
|
||
|
config._original_object_hash = hash(config) # Hash to detect whether the instance was modified
|
||
|
return config, unused_kwargs
|
||
|
else:
|
||
|
config = cls.from_dict(config_dict, **kwargs)
|
||
|
config._original_object_hash = hash(config) # Hash to detect whether the instance was modified
|
||
|
return config
|
||
|
|
||
|
@classmethod
|
||
|
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
||
|
with open(json_file, "r", encoding="utf-8") as reader:
|
||
|
text = reader.read()
|
||
|
return json.loads(text)
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "GenerationConfig":
|
||
|
"""
|
||
|
Instantiates a [`GenerationConfig`] from a Python dictionary of parameters.
|
||
|
|
||
|
Args:
|
||
|
config_dict (`Dict[str, Any]`):
|
||
|
Dictionary that will be used to instantiate the configuration object.
|
||
|
kwargs (`Dict[str, Any]`):
|
||
|
Additional parameters from which to initialize the configuration object.
|
||
|
|
||
|
Returns:
|
||
|
[`GenerationConfig`]: The configuration object instantiated from those parameters.
|
||
|
"""
|
||
|
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
||
|
# Those arguments may be passed along for our internal telemetry.
|
||
|
# We remove them so they don't appear in `return_unused_kwargs`.
|
||
|
kwargs.pop("_from_auto", None)
|
||
|
kwargs.pop("_from_pipeline", None)
|
||
|
# The commit hash might have been updated in the `config_dict`, we don't want the kwargs to erase that update.
|
||
|
if "_commit_hash" in kwargs and "_commit_hash" in config_dict:
|
||
|
kwargs["_commit_hash"] = config_dict["_commit_hash"]
|
||
|
|
||
|
# The line below allows model-specific config to be loaded as well through kwargs, with safety checks.
|
||
|
# See https://github.com/huggingface/transformers/pull/21269
|
||
|
config = cls(**{**config_dict, **kwargs})
|
||
|
unused_kwargs = config.update(**kwargs)
|
||
|
|
||
|
logger.info(f"Generate config {config}")
|
||
|
if return_unused_kwargs:
|
||
|
return config, unused_kwargs
|
||
|
else:
|
||
|
return config
|
||
|
|
||
|
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
|
||
|
"""
|
||
|
Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None,
|
||
|
converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"*
|
||
|
string, which can then be stored in the json format.
|
||
|
"""
|
||
|
if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str):
|
||
|
d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1]
|
||
|
for value in d.values():
|
||
|
if isinstance(value, dict):
|
||
|
self.dict_torch_dtype_to_str(value)
|
||
|
|
||
|
def to_diff_dict(self) -> Dict[str, Any]:
|
||
|
"""
|
||
|
Removes all attributes from config which correspond to the default config attributes for better readability and
|
||
|
serializes to a Python dictionary.
|
||
|
|
||
|
Returns:
|
||
|
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
|
||
|
"""
|
||
|
config_dict = self.to_dict()
|
||
|
|
||
|
# get the default config dict
|
||
|
default_config_dict = GenerationConfig().to_dict()
|
||
|
|
||
|
serializable_config_dict = {}
|
||
|
|
||
|
# only serialize values that differ from the default config
|
||
|
for key, value in config_dict.items():
|
||
|
if key not in default_config_dict or key == "transformers_version" or value != default_config_dict[key]:
|
||
|
serializable_config_dict[key] = value
|
||
|
|
||
|
self.dict_torch_dtype_to_str(serializable_config_dict)
|
||
|
return serializable_config_dict
|
||
|
|
||
|
def to_dict(self) -> Dict[str, Any]:
|
||
|
"""
|
||
|
Serializes this instance to a Python dictionary.
|
||
|
|
||
|
Returns:
|
||
|
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
||
|
"""
|
||
|
output = copy.deepcopy(self.__dict__)
|
||
|
|
||
|
# Fields to ignore at serialization time
|
||
|
if "_commit_hash" in output:
|
||
|
del output["_commit_hash"]
|
||
|
if "_original_object_hash" in output:
|
||
|
del output["_original_object_hash"]
|
||
|
|
||
|
# Transformers version when serializing this file
|
||
|
output["transformers_version"] = __version__
|
||
|
|
||
|
self.dict_torch_dtype_to_str(output)
|
||
|
return output
|
||
|
|
||
|
def to_json_string(self, use_diff: bool = True, ignore_metadata: bool = False) -> str:
|
||
|
"""
|
||
|
Serializes this instance to a JSON string.
|
||
|
|
||
|
Args:
|
||
|
use_diff (`bool`, *optional*, defaults to `True`):
|
||
|
If set to `True`, only the difference between the config instance and the default `GenerationConfig()`
|
||
|
is serialized to JSON string.
|
||
|
ignore_metadata (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to ignore the metadata fields present in the instance
|
||
|
|
||
|
Returns:
|
||
|
`str`: String containing all the attributes that make up this configuration instance in JSON format.
|
||
|
"""
|
||
|
if use_diff is True:
|
||
|
config_dict = self.to_diff_dict()
|
||
|
else:
|
||
|
config_dict = self.to_dict()
|
||
|
|
||
|
if ignore_metadata:
|
||
|
for metadata_field in METADATA_FIELDS:
|
||
|
config_dict.pop(metadata_field, None)
|
||
|
|
||
|
def convert_keys_to_string(obj):
|
||
|
if isinstance(obj, dict):
|
||
|
return {str(key): convert_keys_to_string(value) for key, value in obj.items()}
|
||
|
elif isinstance(obj, list):
|
||
|
return [convert_keys_to_string(item) for item in obj]
|
||
|
else:
|
||
|
return obj
|
||
|
|
||
|
config_dict = convert_keys_to_string(config_dict)
|
||
|
|
||
|
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
||
|
|
||
|
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
|
||
|
"""
|
||
|
Save this instance to a JSON file.
|
||
|
|
||
|
Args:
|
||
|
json_file_path (`str` or `os.PathLike`):
|
||
|
Path to the JSON file in which this configuration instance's parameters will be saved.
|
||
|
use_diff (`bool`, *optional*, defaults to `True`):
|
||
|
If set to `True`, only the difference between the config instance and the default `GenerationConfig()`
|
||
|
is serialized to JSON file.
|
||
|
"""
|
||
|
with open(json_file_path, "w", encoding="utf-8") as writer:
|
||
|
writer.write(self.to_json_string(use_diff=use_diff))
|
||
|
|
||
|
@classmethod
|
||
|
def from_model_config(cls, model_config: PretrainedConfig) -> "GenerationConfig":
|
||
|
"""
|
||
|
Instantiates a [`GenerationConfig`] from a [`PretrainedConfig`]. This function is useful to convert legacy
|
||
|
[`PretrainedConfig`] objects, which may contain generation parameters, into a stand-alone [`GenerationConfig`].
|
||
|
|
||
|
Args:
|
||
|
model_config (`PretrainedConfig`):
|
||
|
The model config that will be used to instantiate the generation config.
|
||
|
|
||
|
Returns:
|
||
|
[`GenerationConfig`]: The configuration object instantiated from those parameters.
|
||
|
"""
|
||
|
config_dict = model_config.to_dict()
|
||
|
config_dict.pop("_from_model_config", None)
|
||
|
config = cls.from_dict(config_dict, return_unused_kwargs=False, _from_model_config=True)
|
||
|
|
||
|
# Special case: some models have generation attributes set in the decoder. Use them if still unset in the
|
||
|
# generation config.
|
||
|
for decoder_name in ("decoder", "generator", "text_config"):
|
||
|
if decoder_name in config_dict:
|
||
|
default_generation_config = GenerationConfig()
|
||
|
decoder_config = config_dict[decoder_name]
|
||
|
for attr in config.to_dict().keys():
|
||
|
if attr in decoder_config and getattr(config, attr) == getattr(default_generation_config, attr):
|
||
|
setattr(config, attr, decoder_config[attr])
|
||
|
|
||
|
config._original_object_hash = hash(config) # Hash to detect whether the instance was modified
|
||
|
return config
|
||
|
|
||
|
def update(self, **kwargs):
|
||
|
"""
|
||
|
Updates attributes of this class instance with attributes from `kwargs` if they match existing atributtes,
|
||
|
returning all the unused kwargs.
|
||
|
|
||
|
Args:
|
||
|
kwargs (`Dict[str, Any]`):
|
||
|
Dictionary of attributes to tentatively update this class.
|
||
|
|
||
|
Returns:
|
||
|
`Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
|
||
|
"""
|
||
|
to_remove = []
|
||
|
for key, value in kwargs.items():
|
||
|
if hasattr(self, key):
|
||
|
setattr(self, key, value)
|
||
|
to_remove.append(key)
|
||
|
|
||
|
# Confirm that the updated instance is still valid
|
||
|
self.validate()
|
||
|
|
||
|
# Remove all the attributes that were updated, without modifying the input dict
|
||
|
unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
|
||
|
return unused_kwargs
|