1524 lines
68 KiB
Python
1524 lines
68 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch DBRX model. """
|
||
|
|
||
|
import math
|
||
|
from typing import Any, Dict, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||
|
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||
|
from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
is_flash_attn_2_available,
|
||
|
is_flash_attn_greater_or_equal_2_10,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_dbrx import DbrxConfig
|
||
|
|
||
|
|
||
|
if is_flash_attn_2_available():
|
||
|
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
||
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CONFIG_FOR_DOC = "DbrxConfig"
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with Gemma->Dbrx
|
||
|
class DbrxRotaryEmbedding(nn.Module):
|
||
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
||
|
super().__init__()
|
||
|
|
||
|
self.dim = dim
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.base = base
|
||
|
self.register_buffer("inv_freq", None, persistent=False)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def forward(self, x, position_ids, seq_len=None):
|
||
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
||
|
if self.inv_freq is None:
|
||
|
self.inv_freq = 1.0 / (
|
||
|
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
||
|
)
|
||
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||
|
position_ids_expanded = position_ids[:, None, :].float()
|
||
|
# Force float32 since bfloat16 loses precision on long contexts
|
||
|
# See https://github.com/huggingface/transformers/pull/29285
|
||
|
device_type = x.device.type
|
||
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
||
|
with torch.autocast(device_type=device_type, enabled=False):
|
||
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||
|
emb = torch.cat((freqs, freqs), dim=-1)
|
||
|
cos = emb.cos()
|
||
|
sin = emb.sin()
|
||
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
||
|
def rotate_half(x):
|
||
|
"""Rotates half the hidden dims of the input."""
|
||
|
x1 = x[..., : x.shape[-1] // 2]
|
||
|
x2 = x[..., x.shape[-1] // 2 :]
|
||
|
return torch.cat((-x2, x1), dim=-1)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
||
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
||
|
"""Applies Rotary Position Embedding to the query and key tensors.
|
||
|
|
||
|
Args:
|
||
|
q (`torch.Tensor`): The query tensor.
|
||
|
k (`torch.Tensor`): The key tensor.
|
||
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
||
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
||
|
position_ids (`torch.Tensor`, *optional*):
|
||
|
Deprecated and unused.
|
||
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
||
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
||
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
||
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
||
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
||
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
||
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
||
|
Returns:
|
||
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
||
|
"""
|
||
|
cos = cos.unsqueeze(unsqueeze_dim)
|
||
|
sin = sin.unsqueeze(unsqueeze_dim)
|
||
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||
|
return q_embed, k_embed
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
||
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||
|
"""
|
||
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||
|
"""
|
||
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||
|
if n_rep == 1:
|
||
|
return hidden_states
|
||
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
||
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||
|
|
||
|
|
||
|
def load_balancing_loss_func(
|
||
|
gate_logits: torch.Tensor,
|
||
|
num_experts: int,
|
||
|
top_k: int,
|
||
|
attention_mask: Optional[torch.Tensor],
|
||
|
) -> torch.Tensor:
|
||
|
r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
||
|
|
||
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
||
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
||
|
experts is too unbalanced.
|
||
|
|
||
|
Args:
|
||
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
||
|
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
||
|
shape [batch_size X sequence_length, num_experts].
|
||
|
num_experts (`int`):
|
||
|
Number of experts.
|
||
|
top_k (`int`):
|
||
|
The number of experts each token is routed to.
|
||
|
attention_mask (`torch.Tensor`, None):
|
||
|
The attention_mask used in forward function
|
||
|
shape [batch_size X sequence_length] if not None.
|
||
|
|
||
|
Returns:
|
||
|
The auxiliary loss.
|
||
|
"""
|
||
|
if gate_logits is None or not isinstance(gate_logits, tuple):
|
||
|
return torch.tensor(0.0)
|
||
|
|
||
|
if isinstance(gate_logits, tuple):
|
||
|
compute_device = gate_logits[0].device
|
||
|
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
||
|
|
||
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
||
|
|
||
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
||
|
|
||
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
||
|
|
||
|
if attention_mask is None:
|
||
|
# Compute the percentage of tokens routed to each experts
|
||
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
||
|
|
||
|
# Compute the average probability of routing to these experts
|
||
|
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
||
|
else:
|
||
|
batch_size, sequence_length = attention_mask.shape
|
||
|
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
||
|
|
||
|
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
||
|
expert_attention_mask = (
|
||
|
attention_mask[None, :, :, None, None]
|
||
|
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
||
|
.reshape(-1, top_k, num_experts)
|
||
|
.to(compute_device)
|
||
|
)
|
||
|
|
||
|
# Compute the percentage of tokens routed to each experts
|
||
|
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
||
|
expert_attention_mask, dim=0
|
||
|
)
|
||
|
|
||
|
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
||
|
router_per_expert_attention_mask = (
|
||
|
attention_mask[None, :, :, None]
|
||
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
||
|
.reshape(-1, num_experts)
|
||
|
.to(compute_device)
|
||
|
)
|
||
|
|
||
|
# Compute the average probability of routing to these experts
|
||
|
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
||
|
router_per_expert_attention_mask, dim=0
|
||
|
)
|
||
|
|
||
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
||
|
return overall_loss * num_experts
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
||
|
def _get_unpad_data(attention_mask):
|
||
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
||
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
||
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
||
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
||
|
return (
|
||
|
indices,
|
||
|
cu_seqlens,
|
||
|
max_seqlen_in_batch,
|
||
|
)
|
||
|
|
||
|
|
||
|
class DbrxAttention(nn.Module):
|
||
|
"""Multi-head self attention."""
|
||
|
|
||
|
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.hidden_size = config.d_model
|
||
|
self.num_heads = config.n_heads
|
||
|
self.head_dim = self.hidden_size // self.num_heads
|
||
|
self.max_position_embeddings = config.max_seq_len
|
||
|
self.block_idx = block_idx
|
||
|
if block_idx is None:
|
||
|
logger.warning_once(
|
||
|
f"Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will "
|
||
|
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` "
|
||
|
+ "when creating this class."
|
||
|
)
|
||
|
|
||
|
attn_config = config.attn_config
|
||
|
self.attn_pdrop = attn_config.attn_pdrop
|
||
|
self.clip_qkv = attn_config.clip_qkv
|
||
|
self.num_key_value_heads = attn_config.kv_n_heads
|
||
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||
|
self.rope_theta = attn_config.rope_theta
|
||
|
self.is_causal = True
|
||
|
|
||
|
self.Wqkv = nn.Linear(
|
||
|
self.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim, bias=False
|
||
|
)
|
||
|
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
||
|
self.rotary_emb = DbrxRotaryEmbedding(
|
||
|
self.head_dim,
|
||
|
max_position_embeddings=self.max_position_embeddings,
|
||
|
base=self.rope_theta,
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
position_ids: torch.LongTensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||
|
bsz, q_len, _ = hidden_states.size()
|
||
|
|
||
|
qkv_states = self.Wqkv(hidden_states)
|
||
|
min_val = -self.clip_qkv if self.clip_qkv is not None else None
|
||
|
max_val = self.clip_qkv
|
||
|
qkv_states = qkv_states.clamp(min=min_val, max=max_val)
|
||
|
|
||
|
query_states, key_states, value_states = qkv_states.split(
|
||
|
[
|
||
|
self.hidden_size,
|
||
|
self.num_key_value_heads * self.head_dim,
|
||
|
self.num_key_value_heads * self.head_dim,
|
||
|
],
|
||
|
dim=2,
|
||
|
)
|
||
|
|
||
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||
|
|
||
|
if past_key_value is not None:
|
||
|
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
||
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||
|
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
|
||
|
|
||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||
|
|
||
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||
|
|
||
|
if attention_mask is not None: # no matter the length, we just slice it
|
||
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||
|
attn_weights = attn_weights + causal_mask
|
||
|
|
||
|
# upcast attention to fp32
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attn_pdrop, training=self.training)
|
||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||
|
|
||
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||
|
+ f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
if not output_attentions:
|
||
|
attn_weights = None
|
||
|
|
||
|
return attn_output, attn_weights, past_key_value
|
||
|
|
||
|
|
||
|
class DbrxFlashAttention2(DbrxAttention):
|
||
|
"""Dbrx flash attention module.
|
||
|
|
||
|
This module inherits from `DbrxAttention` as the weights of the module stays
|
||
|
untouched. The only required change would be on the forward pass where it
|
||
|
calls the public API of flash attention.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args: Any, **kwargs: Any):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
||
|
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
||
|
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
||
|
# From: https://github.com/huggingface/transformers/blob/3b8e2932ce743008f63585aae1e1b8b30dc8b3ac/src/transformers/models/gemma/modeling_gemma.py#L318
|
||
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
logger.info("Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.")
|
||
|
output_attentions = False
|
||
|
|
||
|
bsz, q_len, _ = hidden_states.size()
|
||
|
|
||
|
qkv_states = self.Wqkv(hidden_states)
|
||
|
if self.clip_qkv is not None:
|
||
|
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
||
|
|
||
|
query_states, key_states, value_states = qkv_states.split(
|
||
|
[
|
||
|
self.hidden_size,
|
||
|
self.num_key_value_heads * self.head_dim,
|
||
|
self.num_key_value_heads * self.head_dim,
|
||
|
],
|
||
|
dim=2,
|
||
|
)
|
||
|
|
||
|
# Flash attention requires the input to have the shape
|
||
|
# batch_size x seq_length x head_dim x hidden_dim
|
||
|
# therefore we just need to keep the original shape
|
||
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||
|
|
||
|
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||
|
|
||
|
if past_key_value is not None:
|
||
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||
|
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
|
||
|
|
||
|
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
|
||
|
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
||
|
# to be able to avoid many of these transpose/reshape/view.
|
||
|
query_states = query_states.transpose(1, 2)
|
||
|
key_states = key_states.transpose(1, 2)
|
||
|
value_states = value_states.transpose(1, 2)
|
||
|
|
||
|
dropout_rate = self.attn_pdrop if self.training else 0.0
|
||
|
|
||
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
||
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
||
|
# cast them back in the correct dtype just to be sure everything works as expected.
|
||
|
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
||
|
# in fp32. (LlamaRMSNorm handles it correctly)
|
||
|
input_dtype = query_states.dtype
|
||
|
if input_dtype == torch.float32:
|
||
|
if torch.is_autocast_enabled():
|
||
|
target_dtype = torch.get_autocast_gpu_dtype()
|
||
|
# Handle the case where the model is quantized
|
||
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||
|
target_dtype = self.config._pre_quantization_dtype
|
||
|
else:
|
||
|
target_dtype = query_states.dtype
|
||
|
|
||
|
logger.warning_once(
|
||
|
"The input hidden states seems to be silently casted in float32, this might be "
|
||
|
+ "related to the fact you have upcasted embedding or layer norm layers in "
|
||
|
+ f"float32. We will cast back the input in {target_dtype}."
|
||
|
)
|
||
|
|
||
|
query_states = query_states.to(target_dtype)
|
||
|
key_states = key_states.to(target_dtype)
|
||
|
value_states = value_states.to(target_dtype)
|
||
|
|
||
|
attn_output = self._flash_attention_forward(
|
||
|
query_states,
|
||
|
key_states,
|
||
|
value_states,
|
||
|
attention_mask,
|
||
|
q_len,
|
||
|
dropout=dropout_rate,
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
if not output_attentions:
|
||
|
attn_weights = None
|
||
|
|
||
|
return attn_output, attn_weights, past_key_value
|
||
|
|
||
|
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
||
|
def _flash_attention_forward(
|
||
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
||
|
):
|
||
|
"""
|
||
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
||
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
||
|
|
||
|
Args:
|
||
|
query_states (`torch.Tensor`):
|
||
|
Input query states to be passed to Flash Attention API
|
||
|
key_states (`torch.Tensor`):
|
||
|
Input key states to be passed to Flash Attention API
|
||
|
value_states (`torch.Tensor`):
|
||
|
Input value states to be passed to Flash Attention API
|
||
|
attention_mask (`torch.Tensor`):
|
||
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
||
|
position of padding tokens and 1 for the position of non-padding tokens.
|
||
|
dropout (`float`):
|
||
|
Attention dropout
|
||
|
softmax_scale (`float`, *optional*):
|
||
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
||
|
"""
|
||
|
if not self._flash_attn_uses_top_left_mask:
|
||
|
causal = self.is_causal
|
||
|
else:
|
||
|
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
||
|
causal = self.is_causal and query_length != 1
|
||
|
|
||
|
# Contains at least one padding token in the sequence
|
||
|
if attention_mask is not None:
|
||
|
batch_size = query_states.shape[0]
|
||
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
||
|
query_states, key_states, value_states, attention_mask, query_length
|
||
|
)
|
||
|
|
||
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
||
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
||
|
|
||
|
attn_output_unpad = flash_attn_varlen_func(
|
||
|
query_states,
|
||
|
key_states,
|
||
|
value_states,
|
||
|
cu_seqlens_q=cu_seqlens_q,
|
||
|
cu_seqlens_k=cu_seqlens_k,
|
||
|
max_seqlen_q=max_seqlen_in_batch_q,
|
||
|
max_seqlen_k=max_seqlen_in_batch_k,
|
||
|
dropout_p=dropout,
|
||
|
softmax_scale=softmax_scale,
|
||
|
causal=causal,
|
||
|
)
|
||
|
|
||
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
||
|
else:
|
||
|
attn_output = flash_attn_func(
|
||
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
||
|
)
|
||
|
|
||
|
return attn_output
|
||
|
|
||
|
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
||
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
||
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
||
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
||
|
|
||
|
key_layer = index_first_axis(
|
||
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
||
|
)
|
||
|
value_layer = index_first_axis(
|
||
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
||
|
)
|
||
|
if query_length == kv_seq_len:
|
||
|
query_layer = index_first_axis(
|
||
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
||
|
)
|
||
|
cu_seqlens_q = cu_seqlens_k
|
||
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
||
|
indices_q = indices_k
|
||
|
elif query_length == 1:
|
||
|
max_seqlen_in_batch_q = 1
|
||
|
cu_seqlens_q = torch.arange(
|
||
|
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
||
|
) # There is a memcpy here, that is very bad.
|
||
|
indices_q = cu_seqlens_q[:-1]
|
||
|
query_layer = query_layer.squeeze(1)
|
||
|
else:
|
||
|
# The -q_len: slice assumes left padding.
|
||
|
attention_mask = attention_mask[:, -query_length:]
|
||
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
||
|
|
||
|
return (
|
||
|
query_layer,
|
||
|
key_layer,
|
||
|
value_layer,
|
||
|
indices_q,
|
||
|
(cu_seqlens_q, cu_seqlens_k),
|
||
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
||
|
)
|
||
|
|
||
|
|
||
|
class DbrxSdpaAttention(DbrxAttention):
|
||
|
"""
|
||
|
Dbrx attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
||
|
`DbrxAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
||
|
SDPA API.
|
||
|
"""
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
if output_attentions:
|
||
|
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
||
|
logger.warning_once(
|
||
|
"DbrxModel is using DbrxSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
||
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||
|
)
|
||
|
return super().forward(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
)
|
||
|
|
||
|
bsz, q_len, _ = hidden_states.size()
|
||
|
|
||
|
qkv_states = self.Wqkv(hidden_states)
|
||
|
if self.clip_qkv is not None:
|
||
|
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
||
|
|
||
|
query_states, key_states, value_states = qkv_states.split(
|
||
|
[
|
||
|
self.hidden_size,
|
||
|
self.num_key_value_heads * self.head_dim,
|
||
|
self.num_key_value_heads * self.head_dim,
|
||
|
],
|
||
|
dim=2,
|
||
|
)
|
||
|
|
||
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
|
||
|
|
||
|
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||
|
|
||
|
if past_key_value is not None:
|
||
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||
|
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
|
||
|
|
||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||
|
|
||
|
causal_mask = attention_mask
|
||
|
if attention_mask is not None:
|
||
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
||
|
|
||
|
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
||
|
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
||
|
if query_states.device.type == "cuda" and causal_mask is not None:
|
||
|
query_states = query_states.contiguous()
|
||
|
key_states = key_states.contiguous()
|
||
|
value_states = value_states.contiguous()
|
||
|
|
||
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||
|
query_states,
|
||
|
key_states,
|
||
|
value_states,
|
||
|
attn_mask=causal_mask,
|
||
|
dropout_p=self.attn_pdrop if self.training else 0.0,
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
attn_output = attn_output.view(bsz, q_len, -1)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, None, past_key_value
|
||
|
|
||
|
|
||
|
DBRX_ATTENTION_CLASSES = {
|
||
|
"eager": DbrxAttention,
|
||
|
"flash_attention_2": DbrxFlashAttention2,
|
||
|
"sdpa": DbrxSdpaAttention,
|
||
|
}
|
||
|
|
||
|
|
||
|
class DbrxNormAttentionNorm(nn.Module):
|
||
|
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
|
||
|
super().__init__()
|
||
|
self.block_idx = block_idx
|
||
|
self.resid_pdrop = config.resid_pdrop
|
||
|
self.norm_1 = nn.LayerNorm(config.d_model, bias=False)
|
||
|
self.attn = DBRX_ATTENTION_CLASSES[config._attn_implementation](
|
||
|
config=config,
|
||
|
block_idx=block_idx,
|
||
|
)
|
||
|
self.norm_2 = nn.LayerNorm(config.d_model, bias=False)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
position_ids: torch.LongTensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||
|
residual_states = hidden_states
|
||
|
hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype)
|
||
|
|
||
|
hidden_states, attn_weights, past_key_value = self.attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
|
||
|
hidden_states = hidden_states + residual_states
|
||
|
|
||
|
residual_states = hidden_states
|
||
|
hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype)
|
||
|
|
||
|
return residual_states, hidden_states, attn_weights, past_key_value
|
||
|
|
||
|
|
||
|
class DbrxRouter(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size: int,
|
||
|
moe_num_experts: int,
|
||
|
moe_top_k: int,
|
||
|
moe_jitter_eps: Optional[float],
|
||
|
moe_normalize_expert_weights: Optional[float],
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.hidden_size = hidden_size
|
||
|
self.moe_num_experts = moe_num_experts
|
||
|
self.moe_top_k = moe_top_k
|
||
|
self.moe_jitter_eps = moe_jitter_eps
|
||
|
self.moe_normalize_expert_weights = moe_normalize_expert_weights
|
||
|
|
||
|
self.layer = nn.Linear(self.hidden_size, self.moe_num_experts, bias=False)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
|
||
|
if self.training and self.moe_jitter_eps is not None:
|
||
|
hidden_states *= torch.empty_like(hidden_states).uniform_(
|
||
|
1.0 - self.moe_jitter_eps, 1.0 + self.moe_jitter_eps
|
||
|
)
|
||
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
||
|
weights = self.layer(hidden_states).softmax(dim=-1, dtype=torch.float32)
|
||
|
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)
|
||
|
|
||
|
top_weights_scale = (
|
||
|
torch.norm(top_weights, p=self.moe_normalize_expert_weights, dim=-1, keepdim=True)
|
||
|
if self.moe_normalize_expert_weights is not None
|
||
|
else 1.0
|
||
|
)
|
||
|
top_weights = top_weights / top_weights_scale
|
||
|
|
||
|
weights = weights.to(hidden_states.dtype)
|
||
|
top_weights = top_weights.to(hidden_states.dtype)
|
||
|
return weights, top_weights, top_experts
|
||
|
|
||
|
|
||
|
class DbrxExpertGLU(nn.Module):
|
||
|
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
|
||
|
super().__init__()
|
||
|
self.hidden_size = hidden_size
|
||
|
self.ffn_hidden_size = ffn_hidden_size
|
||
|
self.moe_num_experts = moe_num_experts
|
||
|
|
||
|
self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
|
||
|
self.v1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
|
||
|
self.w2 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
|
||
|
|
||
|
act_fn_name = ffn_act_fn.get("name", "silu")
|
||
|
self.activation_fn = ACT2FN[act_fn_name]
|
||
|
|
||
|
def forward(
|
||
|
self, x: torch.Tensor, expert_w1: torch.Tensor, expert_v1: torch.Tensor, expert_w2: torch.Tensor
|
||
|
) -> torch.Tensor:
|
||
|
gate_proj = x.matmul(expert_w1.t())
|
||
|
up_proj = x.matmul(expert_v1.t())
|
||
|
gate_proj = self.activation_fn(gate_proj)
|
||
|
intermediate_states = gate_proj * up_proj
|
||
|
down_proj = intermediate_states.matmul(expert_w2)
|
||
|
return down_proj
|
||
|
|
||
|
|
||
|
class DbrxExperts(nn.Module):
|
||
|
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
|
||
|
super().__init__()
|
||
|
self.moe_num_experts = moe_num_experts
|
||
|
self.mlp = DbrxExpertGLU(
|
||
|
hidden_size=hidden_size,
|
||
|
ffn_hidden_size=ffn_hidden_size,
|
||
|
moe_num_experts=moe_num_experts,
|
||
|
ffn_act_fn=ffn_act_fn,
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self, x: torch.Tensor, weights: torch.Tensor, top_weights: torch.Tensor, top_experts: torch.LongTensor
|
||
|
) -> torch.Tensor:
|
||
|
bsz, q_len, hidden_size = x.shape
|
||
|
x = x.view(-1, hidden_size)
|
||
|
out = torch.zeros_like(x)
|
||
|
|
||
|
expert_mask = nn.functional.one_hot(top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
|
||
|
# Chunk experts at once to avoid storing full parameter multiple times in autograd
|
||
|
w1_chunked = self.mlp.w1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
|
||
|
self.moe_num_experts, dim=0
|
||
|
)
|
||
|
v1_chunked = self.mlp.v1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
|
||
|
self.moe_num_experts, dim=0
|
||
|
)
|
||
|
w2_chunked = self.mlp.w2.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
|
||
|
self.moe_num_experts, dim=0
|
||
|
)
|
||
|
w1_chunked = [w1.squeeze(dim=0) for w1 in w1_chunked]
|
||
|
v1_chunked = [v1.squeeze(dim=0) for v1 in v1_chunked]
|
||
|
w2_chunked = [w2.squeeze(dim=0) for w2 in w2_chunked]
|
||
|
for expert_idx in range(0, self.moe_num_experts):
|
||
|
topk_idx, token_idx = torch.where(expert_mask[expert_idx])
|
||
|
if token_idx.shape[0] == 0:
|
||
|
continue
|
||
|
|
||
|
token_list = token_idx
|
||
|
topk_list = topk_idx
|
||
|
|
||
|
expert_tokens = x[None, token_list].reshape(-1, hidden_size)
|
||
|
expert_out = (
|
||
|
self.mlp(expert_tokens, w1_chunked[expert_idx], v1_chunked[expert_idx], w2_chunked[expert_idx])
|
||
|
* top_weights[token_list, topk_list, None]
|
||
|
)
|
||
|
|
||
|
out.index_add_(0, token_idx, expert_out)
|
||
|
|
||
|
out = out.reshape(bsz, q_len, hidden_size)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class DbrxFFN(nn.Module):
|
||
|
def __init__(self, config: DbrxConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
ffn_config = config.ffn_config
|
||
|
self.router = DbrxRouter(
|
||
|
hidden_size=config.d_model,
|
||
|
moe_num_experts=ffn_config.moe_num_experts,
|
||
|
moe_top_k=ffn_config.moe_top_k,
|
||
|
moe_jitter_eps=ffn_config.moe_jitter_eps,
|
||
|
moe_normalize_expert_weights=ffn_config.moe_normalize_expert_weights,
|
||
|
)
|
||
|
|
||
|
self.experts = DbrxExperts(
|
||
|
hidden_size=config.d_model,
|
||
|
ffn_hidden_size=ffn_config.ffn_hidden_size,
|
||
|
moe_num_experts=ffn_config.moe_num_experts,
|
||
|
ffn_act_fn=ffn_config.ffn_act_fn,
|
||
|
)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
weights, top_weights, top_experts = self.router(x)
|
||
|
out = self.experts(x, weights, top_weights, top_experts)
|
||
|
return out, weights
|
||
|
|
||
|
|
||
|
class DbrxBlock(nn.Module):
|
||
|
def __init__(self, config: DbrxConfig, block_idx: int):
|
||
|
super().__init__()
|
||
|
self.hidden_size = config.d_model
|
||
|
self.resid_pdrop = config.resid_pdrop
|
||
|
self.block_idx = block_idx
|
||
|
self.norm_attn_norm = DbrxNormAttentionNorm(
|
||
|
config=config,
|
||
|
block_idx=block_idx,
|
||
|
)
|
||
|
self.ffn = DbrxFFN(config=config)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: torch.LongTensor = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
output_router_logits: Optional[bool] = False,
|
||
|
use_cache: Optional[bool] = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Union[
|
||
|
Tuple[torch.Tensor],
|
||
|
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
||
|
Tuple[torch.Tensor, Optional[Cache]],
|
||
|
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]],
|
||
|
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]],
|
||
|
Tuple[torch.Tensor, Optional[Cache], Optional[torch.Tensor]],
|
||
|
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache], Optional[torch.Tensor]],
|
||
|
]:
|
||
|
"""Forward function for DbrxBlock.
|
||
|
|
||
|
Args:
|
||
|
hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)`
|
||
|
attention_mask (`torch.Tensor`, optional): attention mask of size (batch_size, sequence_length)
|
||
|
if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length)
|
||
|
if default attention is used.
|
||
|
past_key_value (`Tuple(torch.Tensor)`, optional): cached past key and value projection states
|
||
|
output_attentions (`bool`, optional): Whether or not to return the attentions tensors of all
|
||
|
attention layers. See `attentions` under returned tensors for more detail.
|
||
|
output_router_logits (`bool`, optional): Whether or not to return the router logits.
|
||
|
use_cache (`bool`, optional): If set to `True`, `past_key_values` key value states are
|
||
|
returned and can be used to speed up decoding (see `past_key_values`).
|
||
|
cache_position (`torch.LongTensor`, optional): position ids of the cache
|
||
|
"""
|
||
|
|
||
|
# Norm + Attention + Norm
|
||
|
resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
# Fully Connected
|
||
|
hidden_states, router_logits = self.ffn(hidden_states)
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
|
||
|
hidden_states = resid_states + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights,)
|
||
|
|
||
|
if use_cache:
|
||
|
outputs += (present_key_value,)
|
||
|
|
||
|
if output_router_logits:
|
||
|
outputs += (router_logits,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
DBRX_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`DbrxConfig`]):
|
||
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||
|
load the weights associated with the model, only the configuration. Check out the
|
||
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare DBRX Model outputting raw hidden-states without any specific head on top.",
|
||
|
DBRX_START_DOCSTRING,
|
||
|
)
|
||
|
class DbrxPreTrainedModel(PreTrainedModel):
|
||
|
config_class = DbrxConfig
|
||
|
base_model_prefix = "transformer"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = ["DbrxBlock"]
|
||
|
_skip_keys_device_placement = ["past_key_values"]
|
||
|
_supports_flash_attn_2 = True
|
||
|
_supports_sdpa = True
|
||
|
_supports_cache_class = True
|
||
|
|
||
|
def _init_weights(self, module: nn.Module):
|
||
|
std = self.config.initializer_range
|
||
|
if isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, DbrxExpertGLU):
|
||
|
module.w1.data.normal_(mean=0.0, std=std)
|
||
|
module.v1.data.normal_(mean=0.0, std=std)
|
||
|
module.w2.data.normal_(mean=0.0, std=std)
|
||
|
|
||
|
def _setup_cache(self, cache_cls: Any, max_batch_size: int, max_cache_len: int):
|
||
|
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
||
|
raise ValueError(
|
||
|
"`static` cache implementation is not compatible with "
|
||
|
+ "`attn_implementation==flash_attention_2`. Make sure to use "
|
||
|
+ "`spda` in the mean time and open an issue at https://github.com/huggingface/transformers."
|
||
|
)
|
||
|
|
||
|
for block in self.transformer.blocks:
|
||
|
device = block.norm_attn_norm.norm_1.weight.device
|
||
|
if hasattr(self.config, "_pre_quantization_dtype"):
|
||
|
dtype = self.config._pre_quantization_dtype
|
||
|
else:
|
||
|
dtype = block.norm_attn_norm.attn.out_proj.weight.dtype
|
||
|
block.norm_attn_norm.attn.past_key_value = cache_cls(
|
||
|
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
||
|
)
|
||
|
|
||
|
def _reset_cache(self):
|
||
|
for block in self.transformer.blocks:
|
||
|
block.norm_attn_norm.attn.past_key_value = None
|
||
|
|
||
|
|
||
|
DBRX_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
||
|
`past_key_values`).
|
||
|
|
||
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
||
|
information on the default strategy.
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.n_positions - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
||
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||
|
|
||
|
Two formats are allowed:
|
||
|
- a [`~cache_utils.Cache`] instance;
|
||
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
||
|
cache format.
|
||
|
|
||
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
||
|
legacy cache format will be returned.
|
||
|
|
||
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||
|
of shape `(batch_size, sequence_length)`.
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
|
`past_key_values`).
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
output_router_logits (`bool`, *optional*):
|
||
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
||
|
should not be returned during inference.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||
|
the complete sequence length.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare DBRX Model outputting raw hidden-states without any specific head on top.",
|
||
|
DBRX_START_DOCSTRING,
|
||
|
)
|
||
|
class DbrxModel(DbrxPreTrainedModel):
|
||
|
"""Transformer decoder consisting of *config.num_hidden_layers*. Each layer is a [`DbrxBlock`] layer.
|
||
|
|
||
|
Args:
|
||
|
config ([`DbrxConfig`]): Model configuration class with all parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: DbrxConfig):
|
||
|
super().__init__(config)
|
||
|
self.padding_idx = config.pad_token_id
|
||
|
self.vocab_size = config.vocab_size
|
||
|
self.emb_pdrop = config.emb_pdrop
|
||
|
|
||
|
self.wte = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
||
|
self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)])
|
||
|
self.norm_f = nn.LayerNorm(config.d_model, bias=False)
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Embedding:
|
||
|
return self.wte
|
||
|
|
||
|
def set_input_embeddings(self, value: nn.Embedding):
|
||
|
self.wte = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(DBRX_INPUTS_DOCSTRING)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Cache] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
output_router_logits: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
) -> Union[Tuple, MoeModelOutputWithPast]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
output_router_logits = (
|
||
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
||
|
raise ValueError(
|
||
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||
|
)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training and use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.wte(input_ids)
|
||
|
|
||
|
inputs_embeds = nn.functional.dropout(inputs_embeds, p=self.emb_pdrop, training=self.training)
|
||
|
|
||
|
past_seen_tokens = 0
|
||
|
if use_cache: # kept for BC (cache positions)
|
||
|
if not isinstance(past_key_values, StaticCache):
|
||
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||
|
past_seen_tokens = past_key_values.get_seq_length()
|
||
|
|
||
|
if cache_position is None:
|
||
|
if isinstance(past_key_values, StaticCache):
|
||
|
raise ValueError("cache_position is a required argument when using StaticCache.")
|
||
|
cache_position = torch.arange(
|
||
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
||
|
)
|
||
|
|
||
|
if position_ids is None:
|
||
|
position_ids = cache_position.unsqueeze(0)
|
||
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
||
|
|
||
|
# embed positions
|
||
|
hidden_states = inputs_embeds
|
||
|
|
||
|
# decoder layers
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attns = () if output_attentions else None
|
||
|
all_router_logits = () if output_router_logits else None
|
||
|
next_decoder_cache = None
|
||
|
|
||
|
for block in self.blocks:
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
block_outputs = self._gradient_checkpointing_func(
|
||
|
block.__call__,
|
||
|
hidden_states,
|
||
|
causal_mask,
|
||
|
position_ids,
|
||
|
past_key_values,
|
||
|
output_attentions,
|
||
|
output_router_logits,
|
||
|
use_cache,
|
||
|
cache_position,
|
||
|
)
|
||
|
else:
|
||
|
block_outputs = block(
|
||
|
hidden_states,
|
||
|
attention_mask=causal_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_router_logits=output_router_logits,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
)
|
||
|
|
||
|
hidden_states = block_outputs[0]
|
||
|
|
||
|
if use_cache:
|
||
|
next_decoder_cache = block_outputs[2 if output_attentions else 1]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attns += (block_outputs[1],)
|
||
|
|
||
|
if output_router_logits:
|
||
|
all_router_logits += (block_outputs[-1],)
|
||
|
|
||
|
hidden_states = self.norm_f(hidden_states)
|
||
|
|
||
|
# add hidden states from the last decoder layer
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
next_cache = None
|
||
|
if use_cache:
|
||
|
next_cache = (
|
||
|
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
||
|
)
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
||
|
if v is not None
|
||
|
)
|
||
|
return MoeModelOutputWithPast(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=next_cache,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attns,
|
||
|
router_logits=all_router_logits,
|
||
|
)
|
||
|
|
||
|
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
||
|
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
||
|
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
||
|
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
||
|
def _update_causal_mask(
|
||
|
self, attention_mask: Optional[torch.Tensor], input_tensor: torch.Tensor, cache_position: torch.Tensor
|
||
|
) -> Optional[torch.Tensor]:
|
||
|
if self.config._attn_implementation == "flash_attention_2":
|
||
|
if attention_mask is not None and 0.0 in attention_mask:
|
||
|
return attention_mask
|
||
|
return None
|
||
|
|
||
|
dtype, device = input_tensor.dtype, input_tensor.device
|
||
|
min_dtype = torch.finfo(dtype).min
|
||
|
sequence_length = input_tensor.shape[1]
|
||
|
if hasattr(self.blocks[0].norm_attn_norm.attn, "past_key_value"): # static cache
|
||
|
target_length = self.config.max_position_embeddings
|
||
|
else: # dynamic cache
|
||
|
target_length = (
|
||
|
attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
|
||
|
)
|
||
|
target_length = int(target_length)
|
||
|
|
||
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
||
|
if sequence_length != 1:
|
||
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
||
|
if attention_mask is not None:
|
||
|
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||
|
if attention_mask.dim() == 2:
|
||
|
mask_length = attention_mask.shape[-1]
|
||
|
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
||
|
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
||
|
elif attention_mask.dim() == 4:
|
||
|
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
||
|
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
||
|
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
||
|
offset = cache_position[0]
|
||
|
else:
|
||
|
offset = 0
|
||
|
mask_shape = attention_mask.shape
|
||
|
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
||
|
causal_mask[
|
||
|
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
||
|
] = mask_slice
|
||
|
|
||
|
if (
|
||
|
self.config._attn_implementation == "sdpa"
|
||
|
and attention_mask is not None
|
||
|
and attention_mask.device.type == "cuda"
|
||
|
):
|
||
|
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
||
|
is_tracing = (
|
||
|
torch.jit.is_tracing()
|
||
|
or isinstance(input_tensor, torch.fx.Proxy)
|
||
|
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
||
|
)
|
||
|
if not is_tracing and torch.any(attention_mask != 1):
|
||
|
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||
|
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||
|
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||
|
|
||
|
return causal_mask
|
||
|
|
||
|
|
||
|
@add_start_docstrings("The DBRX Model transformer for causal language modeling.", DBRX_START_DOCSTRING)
|
||
|
class DbrxForCausalLM(DbrxPreTrainedModel):
|
||
|
def __init__(self, config: DbrxConfig):
|
||
|
super().__init__(config)
|
||
|
self.transformer = DbrxModel(config)
|
||
|
self.vocab_size = config.vocab_size
|
||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
self.moe_loss_weight = config.ffn_config.moe_loss_weight
|
||
|
self.num_experts = config.ffn_config.moe_num_experts
|
||
|
self.num_experts_per_tok = config.ffn_config.moe_top_k
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Embedding:
|
||
|
return self.transformer.get_input_embeddings()
|
||
|
|
||
|
def set_input_embeddings(self, value: nn.Embedding):
|
||
|
self.transformer.set_input_embeddings(value)
|
||
|
|
||
|
def get_output_embeddings(self) -> nn.Linear:
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings: nn.Linear):
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
def set_decoder(self, decoder: DbrxModel):
|
||
|
self.transformer = decoder
|
||
|
|
||
|
def get_decoder(self) -> DbrxModel:
|
||
|
return self.transformer
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(DBRX_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Cache] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
output_router_logits: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
||
|
r"""Forward function for causal language modeling.
|
||
|
|
||
|
Args:
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>> from transformers import AutoTokenizer, DbrxForCausalLM
|
||
|
|
||
|
>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx-instruct")
|
||
|
>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct")
|
||
|
|
||
|
>> prompt = "Hey, are you conscious? Can you talk to me?"
|
||
|
>> inputs = tokenizer(prompt, return_tensors="pt")
|
||
|
|
||
|
>> # Generate
|
||
|
>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||
|
>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
||
|
```
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
output_router_logits = (
|
||
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||
|
outputs = self.transformer(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
output_router_logits=output_router_logits,
|
||
|
return_dict=return_dict,
|
||
|
cache_position=cache_position,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
logits = self.lm_head(hidden_states)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
# Shift so that tokens < n predict n
|
||
|
shift_logits = logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
# Flatten the tokens
|
||
|
loss_fct = nn.CrossEntropyLoss()
|
||
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||
|
shift_labels = shift_labels.view(-1)
|
||
|
# Enable model parallelism
|
||
|
shift_labels = shift_labels.to(shift_logits.device)
|
||
|
loss = loss_fct(shift_logits, shift_labels)
|
||
|
|
||
|
aux_loss = None
|
||
|
if output_router_logits:
|
||
|
aux_loss = load_balancing_loss_func(
|
||
|
outputs.router_logits if return_dict else outputs[-1],
|
||
|
self.num_experts,
|
||
|
self.num_experts_per_tok,
|
||
|
attention_mask,
|
||
|
)
|
||
|
if labels is not None and loss is not None:
|
||
|
loss += self.moe_loss_weight * aux_loss.to(loss.device) # make sure to reside in the same device
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
if output_router_logits:
|
||
|
output = (aux_loss,) + output
|
||
|
return (loss,) + output if loss is not None else output
|
||
|
|
||
|
return MoeCausalLMOutputWithPast(
|
||
|
loss=loss,
|
||
|
aux_loss=aux_loss,
|
||
|
logits=logits,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
router_logits=outputs.router_logits,
|
||
|
)
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
input_ids: torch.Tensor,
|
||
|
past_key_values: Optional[Cache] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Dict[str, Any]:
|
||
|
past_length = 0
|
||
|
if past_key_values is not None:
|
||
|
if isinstance(past_key_values, Cache):
|
||
|
cache_length = past_key_values.get_seq_length()
|
||
|
past_length = past_key_values.seen_tokens
|
||
|
max_cache_length = past_key_values.get_max_length()
|
||
|
else:
|
||
|
cache_length = past_length = past_key_values[0][0].shape[2]
|
||
|
max_cache_length = None
|
||
|
|
||
|
# Keep only the unprocessed tokens:
|
||
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||
|
# input)
|
||
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||
|
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
||
|
# input_ids based on the past_length.
|
||
|
elif past_length < input_ids.shape[1]:
|
||
|
input_ids = input_ids[:, past_length:]
|
||
|
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
||
|
|
||
|
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
||
|
if (
|
||
|
max_cache_length is not None
|
||
|
and attention_mask is not None
|
||
|
and cache_length + input_ids.shape[1] > max_cache_length
|
||
|
):
|
||
|
attention_mask = attention_mask[:, -max_cache_length:]
|
||
|
|
||
|
position_ids = kwargs.get("position_ids", None)
|
||
|
if attention_mask is not None and position_ids is None:
|
||
|
# create position_ids on the fly for batch generation
|
||
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
||
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
||
|
if past_key_values:
|
||
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
||
|
|
||
|
if self.generation_config.cache_implementation == "static":
|
||
|
# generation with static cache
|
||
|
cache_position = kwargs.get("cache_position", None)
|
||
|
if cache_position is None:
|
||
|
past_length = 0
|
||
|
else:
|
||
|
past_length = cache_position[-1] + 1
|
||
|
input_ids = input_ids[:, past_length:]
|
||
|
position_ids = position_ids[:, past_length:] if position_ids is not None else None
|
||
|
|
||
|
# TODO @gante we should only keep a `cache_position` in generate, and do +=1.
|
||
|
# same goes for position ids. Could also help with continued generation.
|
||
|
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
||
|
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
||
|
position_ids = position_ids.contiguous() if position_ids is not None else None
|
||
|
|
||
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||
|
if inputs_embeds is not None and past_key_values is None:
|
||
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
||
|
else:
|
||
|
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
||
|
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
||
|
# TODO: use `next_tokens` directly instead.
|
||
|
model_inputs = {"input_ids": input_ids.contiguous()}
|
||
|
|
||
|
model_inputs.update(
|
||
|
{
|
||
|
"position_ids": position_ids,
|
||
|
"cache_position": cache_position,
|
||
|
"past_key_values": past_key_values,
|
||
|
"use_cache": kwargs.get("use_cache"),
|
||
|
"attention_mask": attention_mask,
|
||
|
}
|
||
|
)
|
||
|
return model_inputs
|
||
|
|
||
|
@staticmethod
|
||
|
def _reorder_cache(past_key_values: Cache, beam_idx: torch.LongTensor):
|
||
|
reordered_past = ()
|
||
|
for layer_past in past_key_values:
|
||
|
reordered_past += (
|
||
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
||
|
)
|
||
|
return reordered_past
|