136 lines
5.9 KiB
Python
136 lines
5.9 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" GLPN model configuration"""
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class GLPNConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN
|
||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the GLPN
|
||
|
[vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
num_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of input channels.
|
||
|
num_encoder_blocks (`int`, *optional*, defaults to 4):
|
||
|
The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
|
||
|
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
|
||
|
The number of layers in each encoder block.
|
||
|
sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
|
||
|
Sequence reduction ratios in each encoder block.
|
||
|
hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
|
||
|
Dimension of each of the encoder blocks.
|
||
|
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
|
||
|
Patch size before each encoder block.
|
||
|
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
|
||
|
Stride before each encoder block.
|
||
|
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
|
||
|
Number of attention heads for each attention layer in each block of the Transformer encoder.
|
||
|
mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
|
||
|
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
|
||
|
encoder blocks.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
decoder_hidden_size (`int`, *optional*, defaults to 64):
|
||
|
The dimension of the decoder.
|
||
|
max_depth (`int`, *optional*, defaults to 10):
|
||
|
The maximum depth of the decoder.
|
||
|
head_in_index (`int`, *optional*, defaults to -1):
|
||
|
The index of the features to use in the head.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import GLPNModel, GLPNConfig
|
||
|
|
||
|
>>> # Initializing a GLPN vinvino02/glpn-kitti style configuration
|
||
|
>>> configuration = GLPNConfig()
|
||
|
|
||
|
>>> # Initializing a model from the vinvino02/glpn-kitti style configuration
|
||
|
>>> model = GLPNModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "glpn"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
num_channels=3,
|
||
|
num_encoder_blocks=4,
|
||
|
depths=[2, 2, 2, 2],
|
||
|
sr_ratios=[8, 4, 2, 1],
|
||
|
hidden_sizes=[32, 64, 160, 256],
|
||
|
patch_sizes=[7, 3, 3, 3],
|
||
|
strides=[4, 2, 2, 2],
|
||
|
num_attention_heads=[1, 2, 5, 8],
|
||
|
mlp_ratios=[4, 4, 4, 4],
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.0,
|
||
|
attention_probs_dropout_prob=0.0,
|
||
|
initializer_range=0.02,
|
||
|
drop_path_rate=0.1,
|
||
|
layer_norm_eps=1e-6,
|
||
|
decoder_hidden_size=64,
|
||
|
max_depth=10,
|
||
|
head_in_index=-1,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.num_channels = num_channels
|
||
|
self.num_encoder_blocks = num_encoder_blocks
|
||
|
self.depths = depths
|
||
|
self.sr_ratios = sr_ratios
|
||
|
self.hidden_sizes = hidden_sizes
|
||
|
self.patch_sizes = patch_sizes
|
||
|
self.strides = strides
|
||
|
self.mlp_ratios = mlp_ratios
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.initializer_range = initializer_range
|
||
|
self.drop_path_rate = drop_path_rate
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.decoder_hidden_size = decoder_hidden_size
|
||
|
self.max_depth = max_depth
|
||
|
self.head_in_index = head_in_index
|