ai-content-maker/.venv/Lib/site-packages/transformers/models/openai/configuration_openai.py

157 lines
7.0 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class OpenAIGPTConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is
used to instantiate a GPT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT
[openai-community/openai-gpt](https://huggingface.co/openai-community/openai-gpt) architecture from OpenAI.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 40478):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`OpenAIGPTModel`] or [`TFOpenAIGPTModel`].
n_positions (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
afn (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
summary_type (`str`, *optional*, defaults to `"cls_index"`):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_first_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
The dropout ratio to be used after the projection and activation.
Examples:
```python
>>> from transformers import OpenAIGPTConfig, OpenAIGPTModel
>>> # Initializing a GPT configuration
>>> configuration = OpenAIGPTConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = OpenAIGPTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "openai-gpt"
attribute_map = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=40478,
n_positions=512,
n_embd=768,
n_layer=12,
n_head=12,
afn="gelu",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
super().__init__(**kwargs)