157 lines
7.0 KiB
Python
157 lines
7.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" OpenAI GPT configuration"""
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class OpenAIGPTConfig(PretrainedConfig):
|
|
"""
|
|
This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is
|
|
used to instantiate a GPT model according to the specified arguments, defining the model architecture.
|
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT
|
|
[openai-community/openai-gpt](https://huggingface.co/openai-community/openai-gpt) architecture from OpenAI.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 40478):
|
|
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`OpenAIGPTModel`] or [`TFOpenAIGPTModel`].
|
|
n_positions (`int`, *optional*, defaults to 512):
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
n_embd (`int`, *optional*, defaults to 768):
|
|
Dimensionality of the embeddings and hidden states.
|
|
n_layer (`int`, *optional*, defaults to 12):
|
|
Number of hidden layers in the Transformer encoder.
|
|
n_head (`int`, *optional*, defaults to 12):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
afn (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
|
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
|
The dropout ratio for the embeddings.
|
|
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
|
The dropout ratio for the attention.
|
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon to use in the layer normalization layers
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
summary_type (`str`, *optional*, defaults to `"cls_index"`):
|
|
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
|
[`OpenAIGPTDoubleHeadsModel`].
|
|
|
|
Has to be one of the following options:
|
|
|
|
- `"last"`: Take the last token hidden state (like XLNet).
|
|
- `"first"`: Take the first token hidden state (like BERT).
|
|
- `"mean"`: Take the mean of all tokens hidden states.
|
|
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
|
- `"attn"`: Not implemented now, use multi-head attention.
|
|
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
|
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
|
[`OpenAIGPTDoubleHeadsModel`].
|
|
|
|
Whether or not to add a projection after the vector extraction.
|
|
summary_activation (`str`, *optional*):
|
|
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
|
[`OpenAIGPTDoubleHeadsModel`].
|
|
|
|
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
|
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
|
|
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
|
[`OpenAIGPTDoubleHeadsModel`].
|
|
|
|
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
|
|
summary_first_dropout (`float`, *optional*, defaults to 0.1):
|
|
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
|
[`OpenAIGPTDoubleHeadsModel`].
|
|
|
|
The dropout ratio to be used after the projection and activation.
|
|
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from transformers import OpenAIGPTConfig, OpenAIGPTModel
|
|
|
|
>>> # Initializing a GPT configuration
|
|
>>> configuration = OpenAIGPTConfig()
|
|
|
|
>>> # Initializing a model (with random weights) from the configuration
|
|
>>> model = OpenAIGPTModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "openai-gpt"
|
|
attribute_map = {
|
|
"max_position_embeddings": "n_positions",
|
|
"hidden_size": "n_embd",
|
|
"num_attention_heads": "n_head",
|
|
"num_hidden_layers": "n_layer",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=40478,
|
|
n_positions=512,
|
|
n_embd=768,
|
|
n_layer=12,
|
|
n_head=12,
|
|
afn="gelu",
|
|
resid_pdrop=0.1,
|
|
embd_pdrop=0.1,
|
|
attn_pdrop=0.1,
|
|
layer_norm_epsilon=1e-5,
|
|
initializer_range=0.02,
|
|
summary_type="cls_index",
|
|
summary_use_proj=True,
|
|
summary_activation=None,
|
|
summary_proj_to_labels=True,
|
|
summary_first_dropout=0.1,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.n_positions = n_positions
|
|
self.n_embd = n_embd
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.afn = afn
|
|
self.resid_pdrop = resid_pdrop
|
|
self.embd_pdrop = embd_pdrop
|
|
self.attn_pdrop = attn_pdrop
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.initializer_range = initializer_range
|
|
self.summary_type = summary_type
|
|
self.summary_use_proj = summary_use_proj
|
|
self.summary_activation = summary_activation
|
|
self.summary_first_dropout = summary_first_dropout
|
|
self.summary_proj_to_labels = summary_proj_to_labels
|
|
super().__init__(**kwargs)
|