129 lines
5.9 KiB
Python
129 lines
5.9 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Pop2Piano model configuration"""
|
||
|
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class Pop2PianoConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`Pop2PianoForConditionalGeneration`]. It is used
|
||
|
to instantiate a Pop2PianoForConditionalGeneration model according to the specified arguments, defining the model
|
||
|
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
|
||
|
Pop2Piano [sweetcocoa/pop2piano](https://huggingface.co/sweetcocoa/pop2piano) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Arguments:
|
||
|
vocab_size (`int`, *optional*, defaults to 2400):
|
||
|
Vocabulary size of the `Pop2PianoForConditionalGeneration` model. Defines the number of different tokens
|
||
|
that can be represented by the `inputs_ids` passed when calling [`Pop2PianoForConditionalGeneration`].
|
||
|
composer_vocab_size (`int`, *optional*, defaults to 21):
|
||
|
Denotes the number of composers.
|
||
|
d_model (`int`, *optional*, defaults to 512):
|
||
|
Size of the encoder layers and the pooler layer.
|
||
|
d_kv (`int`, *optional*, defaults to 64):
|
||
|
Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
|
||
|
be defined as `num_heads * d_kv`.
|
||
|
d_ff (`int`, *optional*, defaults to 2048):
|
||
|
Size of the intermediate feed forward layer in each `Pop2PianoBlock`.
|
||
|
num_layers (`int`, *optional*, defaults to 6):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_decoder_layers (`int`, *optional*):
|
||
|
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
|
||
|
num_heads (`int`, *optional*, defaults to 8):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
|
||
|
The number of buckets to use for each attention layer.
|
||
|
relative_attention_max_distance (`int`, *optional*, defaults to 128):
|
||
|
The maximum distance of the longer sequences for the bucket separation.
|
||
|
dropout_rate (`float`, *optional*, defaults to 0.1):
|
||
|
The ratio for all dropout layers.
|
||
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
initializer_factor (`float`, *optional*, defaults to 1.0):
|
||
|
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
|
||
|
testing).
|
||
|
feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
|
||
|
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
||
|
dense_act_fn (`string`, *optional*, defaults to `"relu"`):
|
||
|
Type of Activation Function to be used in `Pop2PianoDenseActDense` and in `Pop2PianoDenseGatedActDense`.
|
||
|
"""
|
||
|
|
||
|
model_type = "pop2piano"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=2400,
|
||
|
composer_vocab_size=21,
|
||
|
d_model=512,
|
||
|
d_kv=64,
|
||
|
d_ff=2048,
|
||
|
num_layers=6,
|
||
|
num_decoder_layers=None,
|
||
|
num_heads=8,
|
||
|
relative_attention_num_buckets=32,
|
||
|
relative_attention_max_distance=128,
|
||
|
dropout_rate=0.1,
|
||
|
layer_norm_epsilon=1e-6,
|
||
|
initializer_factor=1.0,
|
||
|
feed_forward_proj="gated-gelu", # noqa
|
||
|
is_encoder_decoder=True,
|
||
|
use_cache=True,
|
||
|
pad_token_id=0,
|
||
|
eos_token_id=1,
|
||
|
dense_act_fn="relu",
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.composer_vocab_size = composer_vocab_size
|
||
|
self.d_model = d_model
|
||
|
self.d_kv = d_kv
|
||
|
self.d_ff = d_ff
|
||
|
self.num_layers = num_layers
|
||
|
self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
||
|
self.num_heads = num_heads
|
||
|
self.relative_attention_num_buckets = relative_attention_num_buckets
|
||
|
self.relative_attention_max_distance = relative_attention_max_distance
|
||
|
self.dropout_rate = dropout_rate
|
||
|
self.layer_norm_epsilon = layer_norm_epsilon
|
||
|
self.initializer_factor = initializer_factor
|
||
|
self.feed_forward_proj = feed_forward_proj
|
||
|
self.use_cache = use_cache
|
||
|
self.dense_act_fn = dense_act_fn
|
||
|
self.is_gated_act = self.feed_forward_proj.split("-")[0] == "gated"
|
||
|
self.hidden_size = self.d_model
|
||
|
self.num_attention_heads = num_heads
|
||
|
self.num_hidden_layers = num_layers
|
||
|
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
is_encoder_decoder=is_encoder_decoder,
|
||
|
**kwargs,
|
||
|
)
|