730 lines
31 KiB
Python
730 lines
31 KiB
Python
|
import copy
|
||
|
from collections import defaultdict
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
from huggingface_hub.utils import logging, yaml_dump
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class EvalResult:
|
||
|
"""
|
||
|
Flattened representation of individual evaluation results found in model-index of Model Cards.
|
||
|
|
||
|
For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1.
|
||
|
|
||
|
Args:
|
||
|
task_type (`str`):
|
||
|
The task identifier. Example: "image-classification".
|
||
|
dataset_type (`str`):
|
||
|
The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets.
|
||
|
dataset_name (`str`):
|
||
|
A pretty name for the dataset. Example: "Common Voice (French)".
|
||
|
metric_type (`str`):
|
||
|
The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics.
|
||
|
metric_value (`Any`):
|
||
|
The metric value. Example: 0.9 or "20.0 ± 1.2".
|
||
|
task_name (`str`, *optional*):
|
||
|
A pretty name for the task. Example: "Speech Recognition".
|
||
|
dataset_config (`str`, *optional*):
|
||
|
The name of the dataset configuration used in `load_dataset()`.
|
||
|
Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info:
|
||
|
https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
|
||
|
dataset_split (`str`, *optional*):
|
||
|
The split used in `load_dataset()`. Example: "test".
|
||
|
dataset_revision (`str`, *optional*):
|
||
|
The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
|
||
|
Example: 5503434ddd753f426f4b38109466949a1217c2bb
|
||
|
dataset_args (`Dict[str, Any]`, *optional*):
|
||
|
The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}`
|
||
|
metric_name (`str`, *optional*):
|
||
|
A pretty name for the metric. Example: "Test WER".
|
||
|
metric_config (`str`, *optional*):
|
||
|
The name of the metric configuration used in `load_metric()`.
|
||
|
Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
|
||
|
See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
|
||
|
metric_args (`Dict[str, Any]`, *optional*):
|
||
|
The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
|
||
|
verified (`bool`, *optional*):
|
||
|
Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
|
||
|
verify_token (`str`, *optional*):
|
||
|
A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
|
||
|
source_name (`str`, *optional*):
|
||
|
The name of the source of the evaluation result. Example: "Open LLM Leaderboard".
|
||
|
source_url (`str`, *optional*):
|
||
|
The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard".
|
||
|
"""
|
||
|
|
||
|
# Required
|
||
|
|
||
|
# The task identifier
|
||
|
# Example: automatic-speech-recognition
|
||
|
task_type: str
|
||
|
|
||
|
# The dataset identifier
|
||
|
# Example: common_voice. Use dataset id from https://hf.co/datasets
|
||
|
dataset_type: str
|
||
|
|
||
|
# A pretty name for the dataset.
|
||
|
# Example: Common Voice (French)
|
||
|
dataset_name: str
|
||
|
|
||
|
# The metric identifier
|
||
|
# Example: wer. Use metric id from https://hf.co/metrics
|
||
|
metric_type: str
|
||
|
|
||
|
# Value of the metric.
|
||
|
# Example: 20.0 or "20.0 ± 1.2"
|
||
|
metric_value: Any
|
||
|
|
||
|
# Optional
|
||
|
|
||
|
# A pretty name for the task.
|
||
|
# Example: Speech Recognition
|
||
|
task_name: Optional[str] = None
|
||
|
|
||
|
# The name of the dataset configuration used in `load_dataset()`.
|
||
|
# Example: fr in `load_dataset("common_voice", "fr")`.
|
||
|
# See the `datasets` docs for more info:
|
||
|
# https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
|
||
|
dataset_config: Optional[str] = None
|
||
|
|
||
|
# The split used in `load_dataset()`.
|
||
|
# Example: test
|
||
|
dataset_split: Optional[str] = None
|
||
|
|
||
|
# The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
|
||
|
# Example: 5503434ddd753f426f4b38109466949a1217c2bb
|
||
|
dataset_revision: Optional[str] = None
|
||
|
|
||
|
# The arguments passed during `Metric.compute()`.
|
||
|
# Example for `bleu`: max_order: 4
|
||
|
dataset_args: Optional[Dict[str, Any]] = None
|
||
|
|
||
|
# A pretty name for the metric.
|
||
|
# Example: Test WER
|
||
|
metric_name: Optional[str] = None
|
||
|
|
||
|
# The name of the metric configuration used in `load_metric()`.
|
||
|
# Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
|
||
|
# See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
|
||
|
metric_config: Optional[str] = None
|
||
|
|
||
|
# The arguments passed during `Metric.compute()`.
|
||
|
# Example for `bleu`: max_order: 4
|
||
|
metric_args: Optional[Dict[str, Any]] = None
|
||
|
|
||
|
# Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
|
||
|
verified: Optional[bool] = None
|
||
|
|
||
|
# A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
|
||
|
verify_token: Optional[str] = None
|
||
|
|
||
|
# The name of the source of the evaluation result.
|
||
|
# Example: Open LLM Leaderboard
|
||
|
source_name: Optional[str] = None
|
||
|
|
||
|
# The URL of the source of the evaluation result.
|
||
|
# Example: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
|
||
|
source_url: Optional[str] = None
|
||
|
|
||
|
@property
|
||
|
def unique_identifier(self) -> tuple:
|
||
|
"""Returns a tuple that uniquely identifies this evaluation."""
|
||
|
return (
|
||
|
self.task_type,
|
||
|
self.dataset_type,
|
||
|
self.dataset_config,
|
||
|
self.dataset_split,
|
||
|
self.dataset_revision,
|
||
|
)
|
||
|
|
||
|
def is_equal_except_value(self, other: "EvalResult") -> bool:
|
||
|
"""
|
||
|
Return True if `self` and `other` describe exactly the same metric but with a
|
||
|
different value.
|
||
|
"""
|
||
|
for key, _ in self.__dict__.items():
|
||
|
if key == "metric_value":
|
||
|
continue
|
||
|
# For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`,
|
||
|
# so we exclude it here in the comparison.
|
||
|
if key != "verify_token" and getattr(self, key) != getattr(other, key):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
def __post_init__(self) -> None:
|
||
|
if self.source_name is not None and self.source_url is None:
|
||
|
raise ValueError("If `source_name` is provided, `source_url` must also be provided.")
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CardData:
|
||
|
"""Structure containing metadata from a RepoCard.
|
||
|
|
||
|
[`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`].
|
||
|
|
||
|
Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data
|
||
|
(example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not
|
||
|
inherit from `dict` to allow this export step.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, ignore_metadata_errors: bool = False, **kwargs):
|
||
|
self.__dict__.update(kwargs)
|
||
|
|
||
|
def to_dict(self) -> Dict[str, Any]:
|
||
|
"""Converts CardData to a dict.
|
||
|
|
||
|
Returns:
|
||
|
`dict`: CardData represented as a dictionary ready to be dumped to a YAML
|
||
|
block for inclusion in a README.md file.
|
||
|
"""
|
||
|
|
||
|
data_dict = copy.deepcopy(self.__dict__)
|
||
|
self._to_dict(data_dict)
|
||
|
return _remove_none(data_dict)
|
||
|
|
||
|
def _to_dict(self, data_dict):
|
||
|
"""Use this method in child classes to alter the dict representation of the data. Alter the dict in-place.
|
||
|
|
||
|
Args:
|
||
|
data_dict (`dict`): The raw dict representation of the card data.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
def to_yaml(self, line_break=None) -> str:
|
||
|
"""Dumps CardData to a YAML block for inclusion in a README.md file.
|
||
|
|
||
|
Args:
|
||
|
line_break (str, *optional*):
|
||
|
The line break to use when dumping to yaml.
|
||
|
|
||
|
Returns:
|
||
|
`str`: CardData represented as a YAML block.
|
||
|
"""
|
||
|
return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip()
|
||
|
|
||
|
def __repr__(self):
|
||
|
return repr(self.__dict__)
|
||
|
|
||
|
def __str__(self):
|
||
|
return self.to_yaml()
|
||
|
|
||
|
def get(self, key: str, default: Any = None) -> Any:
|
||
|
"""Get value for a given metadata key."""
|
||
|
return self.__dict__.get(key, default)
|
||
|
|
||
|
def pop(self, key: str, default: Any = None) -> Any:
|
||
|
"""Pop value for a given metadata key."""
|
||
|
return self.__dict__.pop(key, default)
|
||
|
|
||
|
def __getitem__(self, key: str) -> Any:
|
||
|
"""Get value for a given metadata key."""
|
||
|
return self.__dict__[key]
|
||
|
|
||
|
def __setitem__(self, key: str, value: Any) -> None:
|
||
|
"""Set value for a given metadata key."""
|
||
|
self.__dict__[key] = value
|
||
|
|
||
|
def __contains__(self, key: str) -> bool:
|
||
|
"""Check if a given metadata key is set."""
|
||
|
return key in self.__dict__
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
"""Return the number of metadata keys set."""
|
||
|
return len(self.__dict__)
|
||
|
|
||
|
|
||
|
class ModelCardData(CardData):
|
||
|
"""Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
|
||
|
|
||
|
Args:
|
||
|
language (`Union[str, List[str]]`, *optional*):
|
||
|
Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or
|
||
|
639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`.
|
||
|
license (`str`, *optional*):
|
||
|
License of this model. Example: apache-2.0 or any license from
|
||
|
https://huggingface.co/docs/hub/repositories-licenses. Defaults to None.
|
||
|
library_name (`str`, *optional*):
|
||
|
Name of library used by this model. Example: keras or any library from
|
||
|
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts.
|
||
|
Defaults to None.
|
||
|
tags (`List[str]`, *optional*):
|
||
|
List of tags to add to your model that can be used when filtering on the Hugging
|
||
|
Face Hub. Defaults to None.
|
||
|
base_model (`str` or `List[str]`, *optional*):
|
||
|
The identifier of the base model from which the model derives. This is applicable for example if your model is a
|
||
|
fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs
|
||
|
if your model derives from multiple models). Defaults to None.
|
||
|
datasets (`List[str]`, *optional*):
|
||
|
List of datasets that were used to train this model. Should be a dataset ID
|
||
|
found on https://hf.co/datasets. Defaults to None.
|
||
|
metrics (`List[str]`, *optional*):
|
||
|
List of metrics used to evaluate this model. Should be a metric name that can be found
|
||
|
at https://hf.co/metrics. Example: 'accuracy'. Defaults to None.
|
||
|
eval_results (`Union[List[EvalResult], EvalResult]`, *optional*):
|
||
|
List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided,
|
||
|
`model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`.
|
||
|
model_name (`str`, *optional*):
|
||
|
A name for this model. It is used along with
|
||
|
`eval_results` to construct the `model-index` within the card's metadata. The name
|
||
|
you supply here is what will be used on PapersWithCode's leaderboards. If None is provided
|
||
|
then the repo name is used as a default. Defaults to None.
|
||
|
ignore_metadata_errors (`str`):
|
||
|
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
|
||
|
the process. Use it at your own risk.
|
||
|
kwargs (`dict`, *optional*):
|
||
|
Additional metadata that will be added to the model card. Defaults to None.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
>>> from huggingface_hub import ModelCardData
|
||
|
>>> card_data = ModelCardData(
|
||
|
... language="en",
|
||
|
... license="mit",
|
||
|
... library_name="timm",
|
||
|
... tags=['image-classification', 'resnet'],
|
||
|
... )
|
||
|
>>> card_data.to_dict()
|
||
|
{'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']}
|
||
|
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
*,
|
||
|
language: Optional[Union[str, List[str]]] = None,
|
||
|
license: Optional[str] = None,
|
||
|
library_name: Optional[str] = None,
|
||
|
tags: Optional[List[str]] = None,
|
||
|
base_model: Optional[Union[str, List[str]]] = None,
|
||
|
datasets: Optional[List[str]] = None,
|
||
|
metrics: Optional[List[str]] = None,
|
||
|
eval_results: Optional[List[EvalResult]] = None,
|
||
|
model_name: Optional[str] = None,
|
||
|
ignore_metadata_errors: bool = False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.language = language
|
||
|
self.license = license
|
||
|
self.library_name = library_name
|
||
|
self.tags = _to_unique_list(tags)
|
||
|
self.base_model = base_model
|
||
|
self.datasets = datasets
|
||
|
self.metrics = metrics
|
||
|
self.eval_results = eval_results
|
||
|
self.model_name = model_name
|
||
|
|
||
|
model_index = kwargs.pop("model-index", None)
|
||
|
if model_index:
|
||
|
try:
|
||
|
model_name, eval_results = model_index_to_eval_results(model_index)
|
||
|
self.model_name = model_name
|
||
|
self.eval_results = eval_results
|
||
|
except (KeyError, TypeError) as error:
|
||
|
if ignore_metadata_errors:
|
||
|
logger.warning("Invalid model-index. Not loading eval results into CardData.")
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass"
|
||
|
" `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:"
|
||
|
" some information will be lost. Use it at your own risk."
|
||
|
)
|
||
|
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
if self.eval_results:
|
||
|
if type(self.eval_results) == EvalResult:
|
||
|
self.eval_results = [self.eval_results]
|
||
|
if self.model_name is None:
|
||
|
raise ValueError("Passing `eval_results` requires `model_name` to be set.")
|
||
|
|
||
|
def _to_dict(self, data_dict):
|
||
|
"""Format the internal data dict. In this case, we convert eval results to a valid model index"""
|
||
|
if self.eval_results is not None:
|
||
|
data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results)
|
||
|
del data_dict["eval_results"], data_dict["model_name"]
|
||
|
|
||
|
|
||
|
class DatasetCardData(CardData):
|
||
|
"""Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
|
||
|
|
||
|
Args:
|
||
|
language (`List[str]`, *optional*):
|
||
|
Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or
|
||
|
639-3 code (two/three letters), or a special value like "code", "multilingual".
|
||
|
license (`Union[str, List[str]]`, *optional*):
|
||
|
License(s) of this dataset. Example: apache-2.0 or any license from
|
||
|
https://huggingface.co/docs/hub/repositories-licenses.
|
||
|
annotations_creators (`Union[str, List[str]]`, *optional*):
|
||
|
How the annotations for the dataset were created.
|
||
|
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'.
|
||
|
language_creators (`Union[str, List[str]]`, *optional*):
|
||
|
How the text-based data in the dataset was created.
|
||
|
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other'
|
||
|
multilinguality (`Union[str, List[str]]`, *optional*):
|
||
|
Whether the dataset is multilingual.
|
||
|
Options are: 'monolingual', 'multilingual', 'translation', 'other'.
|
||
|
size_categories (`Union[str, List[str]]`, *optional*):
|
||
|
The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K',
|
||
|
'100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'.
|
||
|
source_datasets (`List[str]]`, *optional*):
|
||
|
Indicates whether the dataset is an original dataset or extended from another existing dataset.
|
||
|
Options are: 'original' and 'extended'.
|
||
|
task_categories (`Union[str, List[str]]`, *optional*):
|
||
|
What categories of task does the dataset support?
|
||
|
task_ids (`Union[str, List[str]]`, *optional*):
|
||
|
What specific tasks does the dataset support?
|
||
|
paperswithcode_id (`str`, *optional*):
|
||
|
ID of the dataset on PapersWithCode.
|
||
|
pretty_name (`str`, *optional*):
|
||
|
A more human-readable name for the dataset. (ex. "Cats vs. Dogs")
|
||
|
train_eval_index (`Dict`, *optional*):
|
||
|
A dictionary that describes the necessary spec for doing evaluation on the Hub.
|
||
|
If not provided, it will be gathered from the 'train-eval-index' key of the kwargs.
|
||
|
config_names (`Union[str, List[str]]`, *optional*):
|
||
|
A list of the available dataset configs for the dataset.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
*,
|
||
|
language: Optional[Union[str, List[str]]] = None,
|
||
|
license: Optional[Union[str, List[str]]] = None,
|
||
|
annotations_creators: Optional[Union[str, List[str]]] = None,
|
||
|
language_creators: Optional[Union[str, List[str]]] = None,
|
||
|
multilinguality: Optional[Union[str, List[str]]] = None,
|
||
|
size_categories: Optional[Union[str, List[str]]] = None,
|
||
|
source_datasets: Optional[List[str]] = None,
|
||
|
task_categories: Optional[Union[str, List[str]]] = None,
|
||
|
task_ids: Optional[Union[str, List[str]]] = None,
|
||
|
paperswithcode_id: Optional[str] = None,
|
||
|
pretty_name: Optional[str] = None,
|
||
|
train_eval_index: Optional[Dict] = None,
|
||
|
config_names: Optional[Union[str, List[str]]] = None,
|
||
|
ignore_metadata_errors: bool = False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.annotations_creators = annotations_creators
|
||
|
self.language_creators = language_creators
|
||
|
self.language = language
|
||
|
self.license = license
|
||
|
self.multilinguality = multilinguality
|
||
|
self.size_categories = size_categories
|
||
|
self.source_datasets = source_datasets
|
||
|
self.task_categories = task_categories
|
||
|
self.task_ids = task_ids
|
||
|
self.paperswithcode_id = paperswithcode_id
|
||
|
self.pretty_name = pretty_name
|
||
|
self.config_names = config_names
|
||
|
|
||
|
# TODO - maybe handle this similarly to EvalResult?
|
||
|
self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None)
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
def _to_dict(self, data_dict):
|
||
|
data_dict["train-eval-index"] = data_dict.pop("train_eval_index")
|
||
|
|
||
|
|
||
|
class SpaceCardData(CardData):
|
||
|
"""Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
|
||
|
|
||
|
To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference.
|
||
|
|
||
|
Args:
|
||
|
title (`str`, *optional*)
|
||
|
Title of the Space.
|
||
|
sdk (`str`, *optional*)
|
||
|
SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`).
|
||
|
sdk_version (`str`, *optional*)
|
||
|
Version of the used SDK (if Gradio/Streamlit sdk).
|
||
|
python_version (`str`, *optional*)
|
||
|
Python version used in the Space (if Gradio/Streamlit sdk).
|
||
|
app_file (`str`, *optional*)
|
||
|
Path to your main application file (which contains either gradio or streamlit Python code, or static html code).
|
||
|
Path is relative to the root of the repository.
|
||
|
app_port (`str`, *optional*)
|
||
|
Port on which your application is running. Used only if sdk is `docker`.
|
||
|
license (`str`, *optional*)
|
||
|
License of this model. Example: apache-2.0 or any license from
|
||
|
https://huggingface.co/docs/hub/repositories-licenses.
|
||
|
duplicated_from (`str`, *optional*)
|
||
|
ID of the original Space if this is a duplicated Space.
|
||
|
models (List[`str`], *optional*)
|
||
|
List of models related to this Space. Should be a dataset ID found on https://hf.co/models.
|
||
|
datasets (`List[str]`, *optional*)
|
||
|
List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets.
|
||
|
tags (`List[str]`, *optional*)
|
||
|
List of tags to add to your Space that can be used when filtering on the Hub.
|
||
|
ignore_metadata_errors (`str`):
|
||
|
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
|
||
|
the process. Use it at your own risk.
|
||
|
kwargs (`dict`, *optional*):
|
||
|
Additional metadata that will be added to the space card.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
>>> from huggingface_hub import SpaceCardData
|
||
|
>>> card_data = SpaceCardData(
|
||
|
... title="Dreambooth Training",
|
||
|
... license="mit",
|
||
|
... sdk="gradio",
|
||
|
... duplicated_from="multimodalart/dreambooth-training"
|
||
|
... )
|
||
|
>>> card_data.to_dict()
|
||
|
{'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'}
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
*,
|
||
|
title: Optional[str] = None,
|
||
|
sdk: Optional[str] = None,
|
||
|
sdk_version: Optional[str] = None,
|
||
|
python_version: Optional[str] = None,
|
||
|
app_file: Optional[str] = None,
|
||
|
app_port: Optional[int] = None,
|
||
|
license: Optional[str] = None,
|
||
|
duplicated_from: Optional[str] = None,
|
||
|
models: Optional[List[str]] = None,
|
||
|
datasets: Optional[List[str]] = None,
|
||
|
tags: Optional[List[str]] = None,
|
||
|
ignore_metadata_errors: bool = False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.title = title
|
||
|
self.sdk = sdk
|
||
|
self.sdk_version = sdk_version
|
||
|
self.python_version = python_version
|
||
|
self.app_file = app_file
|
||
|
self.app_port = app_port
|
||
|
self.license = license
|
||
|
self.duplicated_from = duplicated_from
|
||
|
self.models = models
|
||
|
self.datasets = datasets
|
||
|
self.tags = _to_unique_list(tags)
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
|
||
|
def model_index_to_eval_results(model_index: List[Dict[str, Any]]) -> Tuple[str, List[EvalResult]]:
|
||
|
"""Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects.
|
||
|
|
||
|
A detailed spec of the model index can be found here:
|
||
|
https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
||
|
|
||
|
Args:
|
||
|
model_index (`List[Dict[str, Any]]`):
|
||
|
A model index data structure, likely coming from a README.md file on the
|
||
|
Hugging Face Hub.
|
||
|
|
||
|
Returns:
|
||
|
model_name (`str`):
|
||
|
The name of the model as found in the model index. This is used as the
|
||
|
identifier for the model on leaderboards like PapersWithCode.
|
||
|
eval_results (`List[EvalResult]`):
|
||
|
A list of `huggingface_hub.EvalResult` objects containing the metrics
|
||
|
reported in the provided model_index.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
>>> from huggingface_hub.repocard_data import model_index_to_eval_results
|
||
|
>>> # Define a minimal model index
|
||
|
>>> model_index = [
|
||
|
... {
|
||
|
... "name": "my-cool-model",
|
||
|
... "results": [
|
||
|
... {
|
||
|
... "task": {
|
||
|
... "type": "image-classification"
|
||
|
... },
|
||
|
... "dataset": {
|
||
|
... "type": "beans",
|
||
|
... "name": "Beans"
|
||
|
... },
|
||
|
... "metrics": [
|
||
|
... {
|
||
|
... "type": "accuracy",
|
||
|
... "value": 0.9
|
||
|
... }
|
||
|
... ]
|
||
|
... }
|
||
|
... ]
|
||
|
... }
|
||
|
... ]
|
||
|
>>> model_name, eval_results = model_index_to_eval_results(model_index)
|
||
|
>>> model_name
|
||
|
'my-cool-model'
|
||
|
>>> eval_results[0].task_type
|
||
|
'image-classification'
|
||
|
>>> eval_results[0].metric_type
|
||
|
'accuracy'
|
||
|
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
eval_results = []
|
||
|
for elem in model_index:
|
||
|
name = elem["name"]
|
||
|
results = elem["results"]
|
||
|
for result in results:
|
||
|
task_type = result["task"]["type"]
|
||
|
task_name = result["task"].get("name")
|
||
|
dataset_type = result["dataset"]["type"]
|
||
|
dataset_name = result["dataset"]["name"]
|
||
|
dataset_config = result["dataset"].get("config")
|
||
|
dataset_split = result["dataset"].get("split")
|
||
|
dataset_revision = result["dataset"].get("revision")
|
||
|
dataset_args = result["dataset"].get("args")
|
||
|
source_name = result.get("source", {}).get("name")
|
||
|
source_url = result.get("source", {}).get("url")
|
||
|
|
||
|
for metric in result["metrics"]:
|
||
|
metric_type = metric["type"]
|
||
|
metric_value = metric["value"]
|
||
|
metric_name = metric.get("name")
|
||
|
metric_args = metric.get("args")
|
||
|
metric_config = metric.get("config")
|
||
|
verified = metric.get("verified")
|
||
|
verify_token = metric.get("verifyToken")
|
||
|
|
||
|
eval_result = EvalResult(
|
||
|
task_type=task_type, # Required
|
||
|
dataset_type=dataset_type, # Required
|
||
|
dataset_name=dataset_name, # Required
|
||
|
metric_type=metric_type, # Required
|
||
|
metric_value=metric_value, # Required
|
||
|
task_name=task_name,
|
||
|
dataset_config=dataset_config,
|
||
|
dataset_split=dataset_split,
|
||
|
dataset_revision=dataset_revision,
|
||
|
dataset_args=dataset_args,
|
||
|
metric_name=metric_name,
|
||
|
metric_args=metric_args,
|
||
|
metric_config=metric_config,
|
||
|
verified=verified,
|
||
|
verify_token=verify_token,
|
||
|
source_name=source_name,
|
||
|
source_url=source_url,
|
||
|
)
|
||
|
eval_results.append(eval_result)
|
||
|
return name, eval_results
|
||
|
|
||
|
|
||
|
def _remove_none(obj):
|
||
|
"""
|
||
|
Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778
|
||
|
"""
|
||
|
if isinstance(obj, (list, tuple, set)):
|
||
|
return type(obj)(_remove_none(x) for x in obj if x is not None)
|
||
|
elif isinstance(obj, dict):
|
||
|
return type(obj)((_remove_none(k), _remove_none(v)) for k, v in obj.items() if k is not None and v is not None)
|
||
|
else:
|
||
|
return obj
|
||
|
|
||
|
|
||
|
def eval_results_to_model_index(model_name: str, eval_results: List[EvalResult]) -> List[Dict[str, Any]]:
|
||
|
"""Takes in given model name and list of `huggingface_hub.EvalResult` and returns a
|
||
|
valid model-index that will be compatible with the format expected by the
|
||
|
Hugging Face Hub.
|
||
|
|
||
|
Args:
|
||
|
model_name (`str`):
|
||
|
Name of the model (ex. "my-cool-model"). This is used as the identifier
|
||
|
for the model on leaderboards like PapersWithCode.
|
||
|
eval_results (`List[EvalResult]`):
|
||
|
List of `huggingface_hub.EvalResult` objects containing the metrics to be
|
||
|
reported in the model-index.
|
||
|
|
||
|
Returns:
|
||
|
model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
>>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult
|
||
|
>>> # Define minimal eval_results
|
||
|
>>> eval_results = [
|
||
|
... EvalResult(
|
||
|
... task_type="image-classification", # Required
|
||
|
... dataset_type="beans", # Required
|
||
|
... dataset_name="Beans", # Required
|
||
|
... metric_type="accuracy", # Required
|
||
|
... metric_value=0.9, # Required
|
||
|
... )
|
||
|
... ]
|
||
|
>>> eval_results_to_model_index("my-cool-model", eval_results)
|
||
|
[{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}]
|
||
|
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
# Metrics are reported on a unique task-and-dataset basis.
|
||
|
# Here, we make a map of those pairs and the associated EvalResults.
|
||
|
task_and_ds_types_map: Dict[Any, List[EvalResult]] = defaultdict(list)
|
||
|
for eval_result in eval_results:
|
||
|
task_and_ds_types_map[eval_result.unique_identifier].append(eval_result)
|
||
|
|
||
|
# Use the map from above to generate the model index data.
|
||
|
model_index_data = []
|
||
|
for results in task_and_ds_types_map.values():
|
||
|
# All items from `results` share same metadata
|
||
|
sample_result = results[0]
|
||
|
data = {
|
||
|
"task": {
|
||
|
"type": sample_result.task_type,
|
||
|
"name": sample_result.task_name,
|
||
|
},
|
||
|
"dataset": {
|
||
|
"name": sample_result.dataset_name,
|
||
|
"type": sample_result.dataset_type,
|
||
|
"config": sample_result.dataset_config,
|
||
|
"split": sample_result.dataset_split,
|
||
|
"revision": sample_result.dataset_revision,
|
||
|
"args": sample_result.dataset_args,
|
||
|
},
|
||
|
"metrics": [
|
||
|
{
|
||
|
"type": result.metric_type,
|
||
|
"value": result.metric_value,
|
||
|
"name": result.metric_name,
|
||
|
"config": result.metric_config,
|
||
|
"args": result.metric_args,
|
||
|
"verified": result.verified,
|
||
|
"verifyToken": result.verify_token,
|
||
|
}
|
||
|
for result in results
|
||
|
],
|
||
|
}
|
||
|
if sample_result.source_url is not None:
|
||
|
source = {
|
||
|
"url": sample_result.source_url,
|
||
|
}
|
||
|
if sample_result.source_name is not None:
|
||
|
source["name"] = sample_result.source_name
|
||
|
data["source"] = source
|
||
|
model_index_data.append(data)
|
||
|
|
||
|
# TODO - Check if there cases where this list is longer than one?
|
||
|
# Finally, the model index itself is list of dicts.
|
||
|
model_index = [
|
||
|
{
|
||
|
"name": model_name,
|
||
|
"results": model_index_data,
|
||
|
}
|
||
|
]
|
||
|
return _remove_none(model_index)
|
||
|
|
||
|
|
||
|
def _to_unique_list(tags: Optional[List[str]]) -> Optional[List[str]]:
|
||
|
if tags is None:
|
||
|
return tags
|
||
|
unique_tags = [] # make tags unique + keep order explicitly
|
||
|
for tag in tags:
|
||
|
if tag not in unique_tags:
|
||
|
unique_tags.append(tag)
|
||
|
return unique_tags
|