ai-content-maker/.venv/Lib/site-packages/huggingface_hub/repocard_data.py

730 lines
31 KiB
Python

import copy
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
from huggingface_hub.utils import logging, yaml_dump
logger = logging.get_logger(__name__)
@dataclass
class EvalResult:
"""
Flattened representation of individual evaluation results found in model-index of Model Cards.
For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1.
Args:
task_type (`str`):
The task identifier. Example: "image-classification".
dataset_type (`str`):
The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets.
dataset_name (`str`):
A pretty name for the dataset. Example: "Common Voice (French)".
metric_type (`str`):
The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics.
metric_value (`Any`):
The metric value. Example: 0.9 or "20.0 ± 1.2".
task_name (`str`, *optional*):
A pretty name for the task. Example: "Speech Recognition".
dataset_config (`str`, *optional*):
The name of the dataset configuration used in `load_dataset()`.
Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info:
https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
dataset_split (`str`, *optional*):
The split used in `load_dataset()`. Example: "test".
dataset_revision (`str`, *optional*):
The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
Example: 5503434ddd753f426f4b38109466949a1217c2bb
dataset_args (`Dict[str, Any]`, *optional*):
The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}`
metric_name (`str`, *optional*):
A pretty name for the metric. Example: "Test WER".
metric_config (`str`, *optional*):
The name of the metric configuration used in `load_metric()`.
Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
metric_args (`Dict[str, Any]`, *optional*):
The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
verified (`bool`, *optional*):
Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
verify_token (`str`, *optional*):
A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
source_name (`str`, *optional*):
The name of the source of the evaluation result. Example: "Open LLM Leaderboard".
source_url (`str`, *optional*):
The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard".
"""
# Required
# The task identifier
# Example: automatic-speech-recognition
task_type: str
# The dataset identifier
# Example: common_voice. Use dataset id from https://hf.co/datasets
dataset_type: str
# A pretty name for the dataset.
# Example: Common Voice (French)
dataset_name: str
# The metric identifier
# Example: wer. Use metric id from https://hf.co/metrics
metric_type: str
# Value of the metric.
# Example: 20.0 or "20.0 ± 1.2"
metric_value: Any
# Optional
# A pretty name for the task.
# Example: Speech Recognition
task_name: Optional[str] = None
# The name of the dataset configuration used in `load_dataset()`.
# Example: fr in `load_dataset("common_voice", "fr")`.
# See the `datasets` docs for more info:
# https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
dataset_config: Optional[str] = None
# The split used in `load_dataset()`.
# Example: test
dataset_split: Optional[str] = None
# The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
# Example: 5503434ddd753f426f4b38109466949a1217c2bb
dataset_revision: Optional[str] = None
# The arguments passed during `Metric.compute()`.
# Example for `bleu`: max_order: 4
dataset_args: Optional[Dict[str, Any]] = None
# A pretty name for the metric.
# Example: Test WER
metric_name: Optional[str] = None
# The name of the metric configuration used in `load_metric()`.
# Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
# See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
metric_config: Optional[str] = None
# The arguments passed during `Metric.compute()`.
# Example for `bleu`: max_order: 4
metric_args: Optional[Dict[str, Any]] = None
# Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
verified: Optional[bool] = None
# A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
verify_token: Optional[str] = None
# The name of the source of the evaluation result.
# Example: Open LLM Leaderboard
source_name: Optional[str] = None
# The URL of the source of the evaluation result.
# Example: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
source_url: Optional[str] = None
@property
def unique_identifier(self) -> tuple:
"""Returns a tuple that uniquely identifies this evaluation."""
return (
self.task_type,
self.dataset_type,
self.dataset_config,
self.dataset_split,
self.dataset_revision,
)
def is_equal_except_value(self, other: "EvalResult") -> bool:
"""
Return True if `self` and `other` describe exactly the same metric but with a
different value.
"""
for key, _ in self.__dict__.items():
if key == "metric_value":
continue
# For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`,
# so we exclude it here in the comparison.
if key != "verify_token" and getattr(self, key) != getattr(other, key):
return False
return True
def __post_init__(self) -> None:
if self.source_name is not None and self.source_url is None:
raise ValueError("If `source_name` is provided, `source_url` must also be provided.")
@dataclass
class CardData:
"""Structure containing metadata from a RepoCard.
[`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`].
Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data
(example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not
inherit from `dict` to allow this export step.
"""
def __init__(self, ignore_metadata_errors: bool = False, **kwargs):
self.__dict__.update(kwargs)
def to_dict(self) -> Dict[str, Any]:
"""Converts CardData to a dict.
Returns:
`dict`: CardData represented as a dictionary ready to be dumped to a YAML
block for inclusion in a README.md file.
"""
data_dict = copy.deepcopy(self.__dict__)
self._to_dict(data_dict)
return _remove_none(data_dict)
def _to_dict(self, data_dict):
"""Use this method in child classes to alter the dict representation of the data. Alter the dict in-place.
Args:
data_dict (`dict`): The raw dict representation of the card data.
"""
pass
def to_yaml(self, line_break=None) -> str:
"""Dumps CardData to a YAML block for inclusion in a README.md file.
Args:
line_break (str, *optional*):
The line break to use when dumping to yaml.
Returns:
`str`: CardData represented as a YAML block.
"""
return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip()
def __repr__(self):
return repr(self.__dict__)
def __str__(self):
return self.to_yaml()
def get(self, key: str, default: Any = None) -> Any:
"""Get value for a given metadata key."""
return self.__dict__.get(key, default)
def pop(self, key: str, default: Any = None) -> Any:
"""Pop value for a given metadata key."""
return self.__dict__.pop(key, default)
def __getitem__(self, key: str) -> Any:
"""Get value for a given metadata key."""
return self.__dict__[key]
def __setitem__(self, key: str, value: Any) -> None:
"""Set value for a given metadata key."""
self.__dict__[key] = value
def __contains__(self, key: str) -> bool:
"""Check if a given metadata key is set."""
return key in self.__dict__
def __len__(self) -> int:
"""Return the number of metadata keys set."""
return len(self.__dict__)
class ModelCardData(CardData):
"""Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
Args:
language (`Union[str, List[str]]`, *optional*):
Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or
639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`.
license (`str`, *optional*):
License of this model. Example: apache-2.0 or any license from
https://huggingface.co/docs/hub/repositories-licenses. Defaults to None.
library_name (`str`, *optional*):
Name of library used by this model. Example: keras or any library from
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts.
Defaults to None.
tags (`List[str]`, *optional*):
List of tags to add to your model that can be used when filtering on the Hugging
Face Hub. Defaults to None.
base_model (`str` or `List[str]`, *optional*):
The identifier of the base model from which the model derives. This is applicable for example if your model is a
fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs
if your model derives from multiple models). Defaults to None.
datasets (`List[str]`, *optional*):
List of datasets that were used to train this model. Should be a dataset ID
found on https://hf.co/datasets. Defaults to None.
metrics (`List[str]`, *optional*):
List of metrics used to evaluate this model. Should be a metric name that can be found
at https://hf.co/metrics. Example: 'accuracy'. Defaults to None.
eval_results (`Union[List[EvalResult], EvalResult]`, *optional*):
List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided,
`model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`.
model_name (`str`, *optional*):
A name for this model. It is used along with
`eval_results` to construct the `model-index` within the card's metadata. The name
you supply here is what will be used on PapersWithCode's leaderboards. If None is provided
then the repo name is used as a default. Defaults to None.
ignore_metadata_errors (`str`):
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
the process. Use it at your own risk.
kwargs (`dict`, *optional*):
Additional metadata that will be added to the model card. Defaults to None.
Example:
```python
>>> from huggingface_hub import ModelCardData
>>> card_data = ModelCardData(
... language="en",
... license="mit",
... library_name="timm",
... tags=['image-classification', 'resnet'],
... )
>>> card_data.to_dict()
{'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']}
```
"""
def __init__(
self,
*,
language: Optional[Union[str, List[str]]] = None,
license: Optional[str] = None,
library_name: Optional[str] = None,
tags: Optional[List[str]] = None,
base_model: Optional[Union[str, List[str]]] = None,
datasets: Optional[List[str]] = None,
metrics: Optional[List[str]] = None,
eval_results: Optional[List[EvalResult]] = None,
model_name: Optional[str] = None,
ignore_metadata_errors: bool = False,
**kwargs,
):
self.language = language
self.license = license
self.library_name = library_name
self.tags = _to_unique_list(tags)
self.base_model = base_model
self.datasets = datasets
self.metrics = metrics
self.eval_results = eval_results
self.model_name = model_name
model_index = kwargs.pop("model-index", None)
if model_index:
try:
model_name, eval_results = model_index_to_eval_results(model_index)
self.model_name = model_name
self.eval_results = eval_results
except (KeyError, TypeError) as error:
if ignore_metadata_errors:
logger.warning("Invalid model-index. Not loading eval results into CardData.")
else:
raise ValueError(
f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass"
" `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:"
" some information will be lost. Use it at your own risk."
)
super().__init__(**kwargs)
if self.eval_results:
if type(self.eval_results) == EvalResult:
self.eval_results = [self.eval_results]
if self.model_name is None:
raise ValueError("Passing `eval_results` requires `model_name` to be set.")
def _to_dict(self, data_dict):
"""Format the internal data dict. In this case, we convert eval results to a valid model index"""
if self.eval_results is not None:
data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results)
del data_dict["eval_results"], data_dict["model_name"]
class DatasetCardData(CardData):
"""Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
Args:
language (`List[str]`, *optional*):
Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or
639-3 code (two/three letters), or a special value like "code", "multilingual".
license (`Union[str, List[str]]`, *optional*):
License(s) of this dataset. Example: apache-2.0 or any license from
https://huggingface.co/docs/hub/repositories-licenses.
annotations_creators (`Union[str, List[str]]`, *optional*):
How the annotations for the dataset were created.
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'.
language_creators (`Union[str, List[str]]`, *optional*):
How the text-based data in the dataset was created.
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other'
multilinguality (`Union[str, List[str]]`, *optional*):
Whether the dataset is multilingual.
Options are: 'monolingual', 'multilingual', 'translation', 'other'.
size_categories (`Union[str, List[str]]`, *optional*):
The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K',
'100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'.
source_datasets (`List[str]]`, *optional*):
Indicates whether the dataset is an original dataset or extended from another existing dataset.
Options are: 'original' and 'extended'.
task_categories (`Union[str, List[str]]`, *optional*):
What categories of task does the dataset support?
task_ids (`Union[str, List[str]]`, *optional*):
What specific tasks does the dataset support?
paperswithcode_id (`str`, *optional*):
ID of the dataset on PapersWithCode.
pretty_name (`str`, *optional*):
A more human-readable name for the dataset. (ex. "Cats vs. Dogs")
train_eval_index (`Dict`, *optional*):
A dictionary that describes the necessary spec for doing evaluation on the Hub.
If not provided, it will be gathered from the 'train-eval-index' key of the kwargs.
config_names (`Union[str, List[str]]`, *optional*):
A list of the available dataset configs for the dataset.
"""
def __init__(
self,
*,
language: Optional[Union[str, List[str]]] = None,
license: Optional[Union[str, List[str]]] = None,
annotations_creators: Optional[Union[str, List[str]]] = None,
language_creators: Optional[Union[str, List[str]]] = None,
multilinguality: Optional[Union[str, List[str]]] = None,
size_categories: Optional[Union[str, List[str]]] = None,
source_datasets: Optional[List[str]] = None,
task_categories: Optional[Union[str, List[str]]] = None,
task_ids: Optional[Union[str, List[str]]] = None,
paperswithcode_id: Optional[str] = None,
pretty_name: Optional[str] = None,
train_eval_index: Optional[Dict] = None,
config_names: Optional[Union[str, List[str]]] = None,
ignore_metadata_errors: bool = False,
**kwargs,
):
self.annotations_creators = annotations_creators
self.language_creators = language_creators
self.language = language
self.license = license
self.multilinguality = multilinguality
self.size_categories = size_categories
self.source_datasets = source_datasets
self.task_categories = task_categories
self.task_ids = task_ids
self.paperswithcode_id = paperswithcode_id
self.pretty_name = pretty_name
self.config_names = config_names
# TODO - maybe handle this similarly to EvalResult?
self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None)
super().__init__(**kwargs)
def _to_dict(self, data_dict):
data_dict["train-eval-index"] = data_dict.pop("train_eval_index")
class SpaceCardData(CardData):
"""Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference.
Args:
title (`str`, *optional*)
Title of the Space.
sdk (`str`, *optional*)
SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`).
sdk_version (`str`, *optional*)
Version of the used SDK (if Gradio/Streamlit sdk).
python_version (`str`, *optional*)
Python version used in the Space (if Gradio/Streamlit sdk).
app_file (`str`, *optional*)
Path to your main application file (which contains either gradio or streamlit Python code, or static html code).
Path is relative to the root of the repository.
app_port (`str`, *optional*)
Port on which your application is running. Used only if sdk is `docker`.
license (`str`, *optional*)
License of this model. Example: apache-2.0 or any license from
https://huggingface.co/docs/hub/repositories-licenses.
duplicated_from (`str`, *optional*)
ID of the original Space if this is a duplicated Space.
models (List[`str`], *optional*)
List of models related to this Space. Should be a dataset ID found on https://hf.co/models.
datasets (`List[str]`, *optional*)
List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets.
tags (`List[str]`, *optional*)
List of tags to add to your Space that can be used when filtering on the Hub.
ignore_metadata_errors (`str`):
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
the process. Use it at your own risk.
kwargs (`dict`, *optional*):
Additional metadata that will be added to the space card.
Example:
```python
>>> from huggingface_hub import SpaceCardData
>>> card_data = SpaceCardData(
... title="Dreambooth Training",
... license="mit",
... sdk="gradio",
... duplicated_from="multimodalart/dreambooth-training"
... )
>>> card_data.to_dict()
{'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'}
```
"""
def __init__(
self,
*,
title: Optional[str] = None,
sdk: Optional[str] = None,
sdk_version: Optional[str] = None,
python_version: Optional[str] = None,
app_file: Optional[str] = None,
app_port: Optional[int] = None,
license: Optional[str] = None,
duplicated_from: Optional[str] = None,
models: Optional[List[str]] = None,
datasets: Optional[List[str]] = None,
tags: Optional[List[str]] = None,
ignore_metadata_errors: bool = False,
**kwargs,
):
self.title = title
self.sdk = sdk
self.sdk_version = sdk_version
self.python_version = python_version
self.app_file = app_file
self.app_port = app_port
self.license = license
self.duplicated_from = duplicated_from
self.models = models
self.datasets = datasets
self.tags = _to_unique_list(tags)
super().__init__(**kwargs)
def model_index_to_eval_results(model_index: List[Dict[str, Any]]) -> Tuple[str, List[EvalResult]]:
"""Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects.
A detailed spec of the model index can be found here:
https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
Args:
model_index (`List[Dict[str, Any]]`):
A model index data structure, likely coming from a README.md file on the
Hugging Face Hub.
Returns:
model_name (`str`):
The name of the model as found in the model index. This is used as the
identifier for the model on leaderboards like PapersWithCode.
eval_results (`List[EvalResult]`):
A list of `huggingface_hub.EvalResult` objects containing the metrics
reported in the provided model_index.
Example:
```python
>>> from huggingface_hub.repocard_data import model_index_to_eval_results
>>> # Define a minimal model index
>>> model_index = [
... {
... "name": "my-cool-model",
... "results": [
... {
... "task": {
... "type": "image-classification"
... },
... "dataset": {
... "type": "beans",
... "name": "Beans"
... },
... "metrics": [
... {
... "type": "accuracy",
... "value": 0.9
... }
... ]
... }
... ]
... }
... ]
>>> model_name, eval_results = model_index_to_eval_results(model_index)
>>> model_name
'my-cool-model'
>>> eval_results[0].task_type
'image-classification'
>>> eval_results[0].metric_type
'accuracy'
```
"""
eval_results = []
for elem in model_index:
name = elem["name"]
results = elem["results"]
for result in results:
task_type = result["task"]["type"]
task_name = result["task"].get("name")
dataset_type = result["dataset"]["type"]
dataset_name = result["dataset"]["name"]
dataset_config = result["dataset"].get("config")
dataset_split = result["dataset"].get("split")
dataset_revision = result["dataset"].get("revision")
dataset_args = result["dataset"].get("args")
source_name = result.get("source", {}).get("name")
source_url = result.get("source", {}).get("url")
for metric in result["metrics"]:
metric_type = metric["type"]
metric_value = metric["value"]
metric_name = metric.get("name")
metric_args = metric.get("args")
metric_config = metric.get("config")
verified = metric.get("verified")
verify_token = metric.get("verifyToken")
eval_result = EvalResult(
task_type=task_type, # Required
dataset_type=dataset_type, # Required
dataset_name=dataset_name, # Required
metric_type=metric_type, # Required
metric_value=metric_value, # Required
task_name=task_name,
dataset_config=dataset_config,
dataset_split=dataset_split,
dataset_revision=dataset_revision,
dataset_args=dataset_args,
metric_name=metric_name,
metric_args=metric_args,
metric_config=metric_config,
verified=verified,
verify_token=verify_token,
source_name=source_name,
source_url=source_url,
)
eval_results.append(eval_result)
return name, eval_results
def _remove_none(obj):
"""
Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778
"""
if isinstance(obj, (list, tuple, set)):
return type(obj)(_remove_none(x) for x in obj if x is not None)
elif isinstance(obj, dict):
return type(obj)((_remove_none(k), _remove_none(v)) for k, v in obj.items() if k is not None and v is not None)
else:
return obj
def eval_results_to_model_index(model_name: str, eval_results: List[EvalResult]) -> List[Dict[str, Any]]:
"""Takes in given model name and list of `huggingface_hub.EvalResult` and returns a
valid model-index that will be compatible with the format expected by the
Hugging Face Hub.
Args:
model_name (`str`):
Name of the model (ex. "my-cool-model"). This is used as the identifier
for the model on leaderboards like PapersWithCode.
eval_results (`List[EvalResult]`):
List of `huggingface_hub.EvalResult` objects containing the metrics to be
reported in the model-index.
Returns:
model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index.
Example:
```python
>>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult
>>> # Define minimal eval_results
>>> eval_results = [
... EvalResult(
... task_type="image-classification", # Required
... dataset_type="beans", # Required
... dataset_name="Beans", # Required
... metric_type="accuracy", # Required
... metric_value=0.9, # Required
... )
... ]
>>> eval_results_to_model_index("my-cool-model", eval_results)
[{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}]
```
"""
# Metrics are reported on a unique task-and-dataset basis.
# Here, we make a map of those pairs and the associated EvalResults.
task_and_ds_types_map: Dict[Any, List[EvalResult]] = defaultdict(list)
for eval_result in eval_results:
task_and_ds_types_map[eval_result.unique_identifier].append(eval_result)
# Use the map from above to generate the model index data.
model_index_data = []
for results in task_and_ds_types_map.values():
# All items from `results` share same metadata
sample_result = results[0]
data = {
"task": {
"type": sample_result.task_type,
"name": sample_result.task_name,
},
"dataset": {
"name": sample_result.dataset_name,
"type": sample_result.dataset_type,
"config": sample_result.dataset_config,
"split": sample_result.dataset_split,
"revision": sample_result.dataset_revision,
"args": sample_result.dataset_args,
},
"metrics": [
{
"type": result.metric_type,
"value": result.metric_value,
"name": result.metric_name,
"config": result.metric_config,
"args": result.metric_args,
"verified": result.verified,
"verifyToken": result.verify_token,
}
for result in results
],
}
if sample_result.source_url is not None:
source = {
"url": sample_result.source_url,
}
if sample_result.source_name is not None:
source["name"] = sample_result.source_name
data["source"] = source
model_index_data.append(data)
# TODO - Check if there cases where this list is longer than one?
# Finally, the model index itself is list of dicts.
model_index = [
{
"name": model_name,
"results": model_index_data,
}
]
return _remove_none(model_index)
def _to_unique_list(tags: Optional[List[str]]) -> Optional[List[str]]:
if tags is None:
return tags
unique_tags = [] # make tags unique + keep order explicitly
for tag in tags:
if tag not in unique_tags:
unique_tags.append(tag)
return unique_tags