376 lines
10 KiB
Python
376 lines
10 KiB
Python
|
"""
|
||
|
Implementation of operations involving polynomials.
|
||
|
"""
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.polynomial import polynomial as poly
|
||
|
from numpy.polynomial import polyutils as pu
|
||
|
|
||
|
from numba import literal_unroll
|
||
|
from numba.core import types, errors
|
||
|
from numba.core.extending import overload
|
||
|
from numba.np.numpy_support import type_can_asarray, as_dtype, from_dtype
|
||
|
|
||
|
|
||
|
@overload(np.roots)
|
||
|
def roots_impl(p):
|
||
|
|
||
|
# cast int vectors to float cf. numpy, this is a bit dicey as
|
||
|
# the roots could be complex which will fail anyway
|
||
|
ty = getattr(p, 'dtype', p)
|
||
|
if isinstance(ty, types.Integer):
|
||
|
cast_t = np.float64
|
||
|
else:
|
||
|
cast_t = as_dtype(ty)
|
||
|
|
||
|
def roots_impl(p):
|
||
|
# impl based on numpy:
|
||
|
# https://github.com/numpy/numpy/blob/master/numpy/lib/polynomial.py
|
||
|
|
||
|
if len(p.shape) != 1:
|
||
|
raise ValueError("Input must be a 1d array.")
|
||
|
|
||
|
non_zero = np.nonzero(p)[0]
|
||
|
|
||
|
if len(non_zero) == 0:
|
||
|
return np.zeros(0, dtype=cast_t)
|
||
|
|
||
|
tz = len(p) - non_zero[-1] - 1
|
||
|
|
||
|
# pull out the coeffs selecting between possible zero pads
|
||
|
p = p[int(non_zero[0]):int(non_zero[-1]) + 1]
|
||
|
|
||
|
n = len(p)
|
||
|
if n > 1:
|
||
|
# construct companion matrix, ensure fortran order
|
||
|
# to give to eigvals, write to upper diag and then
|
||
|
# transpose.
|
||
|
A = np.diag(np.ones((n - 2,), cast_t), 1).T
|
||
|
A[0, :] = -p[1:] / p[0] # normalize
|
||
|
roots = np.linalg.eigvals(A)
|
||
|
else:
|
||
|
roots = np.zeros(0, dtype=cast_t)
|
||
|
|
||
|
# add in additional zeros on the end if needed
|
||
|
if tz > 0:
|
||
|
return np.hstack((roots, np.zeros(tz, dtype=cast_t)))
|
||
|
else:
|
||
|
return roots
|
||
|
|
||
|
return roots_impl
|
||
|
|
||
|
|
||
|
@overload(pu.trimseq)
|
||
|
def polyutils_trimseq(seq):
|
||
|
if not type_can_asarray(seq):
|
||
|
msg = 'The argument "seq" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
if isinstance(seq, types.BaseTuple):
|
||
|
msg = 'Unsupported type %r for argument "seq"'
|
||
|
raise errors.TypingError(msg % (seq))
|
||
|
|
||
|
if np.ndim(seq) > 1:
|
||
|
msg = 'Coefficient array is not 1-d'
|
||
|
raise errors.NumbaValueError(msg)
|
||
|
|
||
|
def impl(seq):
|
||
|
if len(seq) == 0:
|
||
|
return seq
|
||
|
else:
|
||
|
for i in range(len(seq) - 1, -1, -1):
|
||
|
if seq[i] != 0:
|
||
|
break
|
||
|
return seq[:i + 1]
|
||
|
|
||
|
return impl
|
||
|
|
||
|
|
||
|
@overload(pu.as_series)
|
||
|
def polyutils_as_series(alist, trim=True):
|
||
|
if not type_can_asarray(alist):
|
||
|
msg = 'The argument "alist" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
if not isinstance(trim, (bool, types.Boolean)):
|
||
|
msg = 'The argument "trim" must be boolean'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
res_dtype = np.float64
|
||
|
|
||
|
tuple_input = isinstance(alist, types.BaseTuple)
|
||
|
list_input = isinstance(alist, types.List)
|
||
|
if tuple_input:
|
||
|
if np.any(np.array([np.ndim(a) > 1 for a in alist])):
|
||
|
raise errors.NumbaValueError("Coefficient array is not 1-d")
|
||
|
|
||
|
res_dtype = _poly_result_dtype(*alist)
|
||
|
|
||
|
elif list_input:
|
||
|
dt = as_dtype(_get_list_type(alist))
|
||
|
res_dtype = np.result_type(dt, np.float64)
|
||
|
|
||
|
else:
|
||
|
if np.ndim(alist) <= 2:
|
||
|
res_dtype = np.result_type(res_dtype, as_dtype(alist.dtype))
|
||
|
else:
|
||
|
# If total dimension has ndim > 2, then coeff arrays are not 1D
|
||
|
raise errors.NumbaValueError("Coefficient array is not 1-d")
|
||
|
|
||
|
def impl(alist, trim=True):
|
||
|
if tuple_input:
|
||
|
arrays = []
|
||
|
for item in literal_unroll(alist):
|
||
|
arrays.append(np.atleast_1d(np.asarray(item)).astype(res_dtype))
|
||
|
|
||
|
elif list_input:
|
||
|
arrays = [np.atleast_1d(np.asarray(a)).astype(res_dtype)
|
||
|
for a in alist]
|
||
|
|
||
|
else:
|
||
|
alist_arr = np.asarray(alist)
|
||
|
arrays = [np.atleast_1d(np.asarray(a)).astype(res_dtype)
|
||
|
for a in alist_arr]
|
||
|
|
||
|
if min([a.size for a in arrays]) == 0:
|
||
|
raise ValueError("Coefficient array is empty")
|
||
|
|
||
|
if trim:
|
||
|
arrays = [pu.trimseq(a) for a in arrays]
|
||
|
|
||
|
ret = arrays
|
||
|
return ret
|
||
|
|
||
|
return impl
|
||
|
|
||
|
|
||
|
def _get_list_type(l):
|
||
|
# A helper function that takes a list (possibly nested) and returns its
|
||
|
# dtype. Returns a Numba type.
|
||
|
dt = l.dtype
|
||
|
if (not isinstance(dt, types.Number)) and type_can_asarray(dt):
|
||
|
return _get_list_type(dt)
|
||
|
else:
|
||
|
return dt
|
||
|
|
||
|
|
||
|
def _poly_result_dtype(*args):
|
||
|
# A helper function that takes a tuple of inputs and returns their result
|
||
|
# dtype. Used for poly functions. Returns a NumPy dtype.
|
||
|
res_dtype = np.float64
|
||
|
for item in args:
|
||
|
if isinstance(item, types.BaseTuple):
|
||
|
s1 = item.types
|
||
|
elif isinstance(item, types.List):
|
||
|
s1 = [_get_list_type(item)]
|
||
|
elif isinstance(item, types.Number):
|
||
|
s1 = [item]
|
||
|
elif isinstance(item, types.Array):
|
||
|
s1 = [item.dtype]
|
||
|
else:
|
||
|
msg = 'Input dtype must be scalar'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
try:
|
||
|
l = [as_dtype(t) for t in s1]
|
||
|
l.append(res_dtype)
|
||
|
res_dtype = (np.result_type(*l))
|
||
|
except errors.NumbaNotImplementedError:
|
||
|
msg = 'Input dtype must be scalar.'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
return from_dtype(res_dtype)
|
||
|
|
||
|
|
||
|
@overload(poly.polyadd)
|
||
|
def numpy_polyadd(c1, c2):
|
||
|
if not type_can_asarray(c1):
|
||
|
msg = 'The argument "c1" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
if not type_can_asarray(c2):
|
||
|
msg = 'The argument "c2" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
def impl(c1, c2):
|
||
|
arr1, arr2 = pu.as_series((c1, c2))
|
||
|
diff = len(arr2) - len(arr1)
|
||
|
if diff > 0:
|
||
|
zr = np.zeros(diff)
|
||
|
arr1 = np.concatenate((arr1, zr))
|
||
|
if diff < 0:
|
||
|
zr = np.zeros(-diff)
|
||
|
arr2 = np.concatenate((arr2, zr))
|
||
|
val = arr1 + arr2
|
||
|
return pu.trimseq(val)
|
||
|
|
||
|
return impl
|
||
|
|
||
|
|
||
|
@overload(poly.polysub)
|
||
|
def numpy_polysub(c1, c2):
|
||
|
if not type_can_asarray(c1):
|
||
|
msg = 'The argument "c1" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
if not type_can_asarray(c2):
|
||
|
msg = 'The argument "c2" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
def impl(c1, c2):
|
||
|
arr1, arr2 = pu.as_series((c1, c2))
|
||
|
diff = len(arr2) - len(arr1)
|
||
|
if diff > 0:
|
||
|
zr = np.zeros(diff)
|
||
|
arr1 = np.concatenate((arr1, zr))
|
||
|
if diff < 0:
|
||
|
zr = np.zeros(-diff)
|
||
|
arr2 = np.concatenate((arr2, zr))
|
||
|
val = arr1 - arr2
|
||
|
return pu.trimseq(val)
|
||
|
|
||
|
return impl
|
||
|
|
||
|
|
||
|
@overload(poly.polymul)
|
||
|
def numpy_polymul(c1, c2):
|
||
|
if not type_can_asarray(c1):
|
||
|
msg = 'The argument "c1" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
if not type_can_asarray(c2):
|
||
|
msg = 'The argument "c2" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
def impl(c1, c2):
|
||
|
arr1, arr2 = pu.as_series((c1, c2))
|
||
|
val = np.convolve(arr1, arr2)
|
||
|
return pu.trimseq(val)
|
||
|
|
||
|
return impl
|
||
|
|
||
|
|
||
|
@overload(poly.polyval, prefer_literal=True)
|
||
|
def poly_polyval(x, c, tensor=True):
|
||
|
if not type_can_asarray(x):
|
||
|
msg = 'The argument "x" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
if not type_can_asarray(c):
|
||
|
msg = 'The argument "c" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
if not isinstance(tensor, (bool, types.BooleanLiteral)):
|
||
|
msg = 'The argument "tensor" must be boolean'
|
||
|
raise errors.RequireLiteralValue(msg)
|
||
|
|
||
|
res_dtype = _poly_result_dtype(c, x)
|
||
|
|
||
|
# Simulate new_shape = (1,) * np.ndim(x) in the general case
|
||
|
# If x is a number, new_shape is not used
|
||
|
# If x is a tuple or a list, then it's 1d hence new_shape=(1,)
|
||
|
x_nd_array = not isinstance(x, types.Number)
|
||
|
new_shape = (1,)
|
||
|
if isinstance(x, types.Array):
|
||
|
# If x is a np.array, then take its dimension
|
||
|
new_shape = (1,) * np.ndim(x)
|
||
|
|
||
|
if isinstance(tensor, bool):
|
||
|
tensor_arg = tensor
|
||
|
else:
|
||
|
tensor_arg = tensor.literal_value
|
||
|
|
||
|
def impl(x, c, tensor=True):
|
||
|
arr = np.asarray(c).astype(res_dtype)
|
||
|
inputs = np.asarray(x).astype(res_dtype)
|
||
|
if x_nd_array and tensor_arg:
|
||
|
arr = arr.reshape(arr.shape + new_shape)
|
||
|
|
||
|
l = len(arr)
|
||
|
y = arr[l - 1] + inputs * 0
|
||
|
|
||
|
for i in range(l - 1, 0, -1):
|
||
|
y = arr[i - 1] + y * inputs
|
||
|
|
||
|
return y
|
||
|
|
||
|
return impl
|
||
|
|
||
|
|
||
|
@overload(poly.polyint)
|
||
|
def poly_polyint(c, m=1):
|
||
|
|
||
|
if not type_can_asarray(c):
|
||
|
msg = 'The argument "c" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
if not isinstance(m, (int, types.Integer)):
|
||
|
msg = 'The argument "m" must be an integer'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
res_dtype = as_dtype(_poly_result_dtype(c))
|
||
|
|
||
|
if not np.issubdtype(res_dtype, np.number):
|
||
|
msg = f'Input dtype must be scalar. Found {res_dtype} instead'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
is1D = ((np.ndim(c) == 1) or
|
||
|
(isinstance(c, (types.List, types.BaseTuple))
|
||
|
and isinstance(c.dtype, types.Number)))
|
||
|
|
||
|
def impl(c, m=1):
|
||
|
c = np.asarray(c).astype(res_dtype)
|
||
|
cdt = c.dtype
|
||
|
for i in range(m):
|
||
|
n = len(c)
|
||
|
|
||
|
tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt)
|
||
|
tmp[0] = c[0] * 0
|
||
|
tmp[1] = c[0]
|
||
|
for j in range(1, n):
|
||
|
tmp[j + 1] = c[j] / (j + 1)
|
||
|
c = tmp
|
||
|
if is1D:
|
||
|
return pu.trimseq(c)
|
||
|
else:
|
||
|
return c
|
||
|
|
||
|
return impl
|
||
|
|
||
|
|
||
|
@overload(poly.polydiv)
|
||
|
def numpy_polydiv(c1, c2):
|
||
|
if not type_can_asarray(c1):
|
||
|
msg = 'The argument "c1" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
if not type_can_asarray(c2):
|
||
|
msg = 'The argument "c2" must be array-like'
|
||
|
raise errors.TypingError(msg)
|
||
|
|
||
|
def impl(c1, c2):
|
||
|
arr1, arr2 = pu.as_series((c1, c2))
|
||
|
if arr2[-1] == 0:
|
||
|
raise ZeroDivisionError()
|
||
|
|
||
|
l1 = len(arr1)
|
||
|
l2 = len(arr2)
|
||
|
if l1 < l2:
|
||
|
return arr1[:1] * 0, arr1
|
||
|
elif l2 == 1:
|
||
|
return arr1 / arr2[-1], arr1[:1] * 0
|
||
|
else:
|
||
|
dlen = l1 - l2
|
||
|
scl = arr2[-1]
|
||
|
arr2 = arr2[:-1] / scl
|
||
|
i = dlen
|
||
|
j = l1 - 1
|
||
|
while i >= 0:
|
||
|
arr1[i:j] -= arr2 * arr1[j]
|
||
|
i -= 1
|
||
|
j -= 1
|
||
|
return arr1[j + 1:] / scl, pu.trimseq(arr1[:j + 1])
|
||
|
|
||
|
return impl
|