ai-content-maker/.venv/Lib/site-packages/numba/np/polynomial/polynomial_functions.py

376 lines
10 KiB
Python

"""
Implementation of operations involving polynomials.
"""
import numpy as np
from numpy.polynomial import polynomial as poly
from numpy.polynomial import polyutils as pu
from numba import literal_unroll
from numba.core import types, errors
from numba.core.extending import overload
from numba.np.numpy_support import type_can_asarray, as_dtype, from_dtype
@overload(np.roots)
def roots_impl(p):
# cast int vectors to float cf. numpy, this is a bit dicey as
# the roots could be complex which will fail anyway
ty = getattr(p, 'dtype', p)
if isinstance(ty, types.Integer):
cast_t = np.float64
else:
cast_t = as_dtype(ty)
def roots_impl(p):
# impl based on numpy:
# https://github.com/numpy/numpy/blob/master/numpy/lib/polynomial.py
if len(p.shape) != 1:
raise ValueError("Input must be a 1d array.")
non_zero = np.nonzero(p)[0]
if len(non_zero) == 0:
return np.zeros(0, dtype=cast_t)
tz = len(p) - non_zero[-1] - 1
# pull out the coeffs selecting between possible zero pads
p = p[int(non_zero[0]):int(non_zero[-1]) + 1]
n = len(p)
if n > 1:
# construct companion matrix, ensure fortran order
# to give to eigvals, write to upper diag and then
# transpose.
A = np.diag(np.ones((n - 2,), cast_t), 1).T
A[0, :] = -p[1:] / p[0] # normalize
roots = np.linalg.eigvals(A)
else:
roots = np.zeros(0, dtype=cast_t)
# add in additional zeros on the end if needed
if tz > 0:
return np.hstack((roots, np.zeros(tz, dtype=cast_t)))
else:
return roots
return roots_impl
@overload(pu.trimseq)
def polyutils_trimseq(seq):
if not type_can_asarray(seq):
msg = 'The argument "seq" must be array-like'
raise errors.TypingError(msg)
if isinstance(seq, types.BaseTuple):
msg = 'Unsupported type %r for argument "seq"'
raise errors.TypingError(msg % (seq))
if np.ndim(seq) > 1:
msg = 'Coefficient array is not 1-d'
raise errors.NumbaValueError(msg)
def impl(seq):
if len(seq) == 0:
return seq
else:
for i in range(len(seq) - 1, -1, -1):
if seq[i] != 0:
break
return seq[:i + 1]
return impl
@overload(pu.as_series)
def polyutils_as_series(alist, trim=True):
if not type_can_asarray(alist):
msg = 'The argument "alist" must be array-like'
raise errors.TypingError(msg)
if not isinstance(trim, (bool, types.Boolean)):
msg = 'The argument "trim" must be boolean'
raise errors.TypingError(msg)
res_dtype = np.float64
tuple_input = isinstance(alist, types.BaseTuple)
list_input = isinstance(alist, types.List)
if tuple_input:
if np.any(np.array([np.ndim(a) > 1 for a in alist])):
raise errors.NumbaValueError("Coefficient array is not 1-d")
res_dtype = _poly_result_dtype(*alist)
elif list_input:
dt = as_dtype(_get_list_type(alist))
res_dtype = np.result_type(dt, np.float64)
else:
if np.ndim(alist) <= 2:
res_dtype = np.result_type(res_dtype, as_dtype(alist.dtype))
else:
# If total dimension has ndim > 2, then coeff arrays are not 1D
raise errors.NumbaValueError("Coefficient array is not 1-d")
def impl(alist, trim=True):
if tuple_input:
arrays = []
for item in literal_unroll(alist):
arrays.append(np.atleast_1d(np.asarray(item)).astype(res_dtype))
elif list_input:
arrays = [np.atleast_1d(np.asarray(a)).astype(res_dtype)
for a in alist]
else:
alist_arr = np.asarray(alist)
arrays = [np.atleast_1d(np.asarray(a)).astype(res_dtype)
for a in alist_arr]
if min([a.size for a in arrays]) == 0:
raise ValueError("Coefficient array is empty")
if trim:
arrays = [pu.trimseq(a) for a in arrays]
ret = arrays
return ret
return impl
def _get_list_type(l):
# A helper function that takes a list (possibly nested) and returns its
# dtype. Returns a Numba type.
dt = l.dtype
if (not isinstance(dt, types.Number)) and type_can_asarray(dt):
return _get_list_type(dt)
else:
return dt
def _poly_result_dtype(*args):
# A helper function that takes a tuple of inputs and returns their result
# dtype. Used for poly functions. Returns a NumPy dtype.
res_dtype = np.float64
for item in args:
if isinstance(item, types.BaseTuple):
s1 = item.types
elif isinstance(item, types.List):
s1 = [_get_list_type(item)]
elif isinstance(item, types.Number):
s1 = [item]
elif isinstance(item, types.Array):
s1 = [item.dtype]
else:
msg = 'Input dtype must be scalar'
raise errors.TypingError(msg)
try:
l = [as_dtype(t) for t in s1]
l.append(res_dtype)
res_dtype = (np.result_type(*l))
except errors.NumbaNotImplementedError:
msg = 'Input dtype must be scalar.'
raise errors.TypingError(msg)
return from_dtype(res_dtype)
@overload(poly.polyadd)
def numpy_polyadd(c1, c2):
if not type_can_asarray(c1):
msg = 'The argument "c1" must be array-like'
raise errors.TypingError(msg)
if not type_can_asarray(c2):
msg = 'The argument "c2" must be array-like'
raise errors.TypingError(msg)
def impl(c1, c2):
arr1, arr2 = pu.as_series((c1, c2))
diff = len(arr2) - len(arr1)
if diff > 0:
zr = np.zeros(diff)
arr1 = np.concatenate((arr1, zr))
if diff < 0:
zr = np.zeros(-diff)
arr2 = np.concatenate((arr2, zr))
val = arr1 + arr2
return pu.trimseq(val)
return impl
@overload(poly.polysub)
def numpy_polysub(c1, c2):
if not type_can_asarray(c1):
msg = 'The argument "c1" must be array-like'
raise errors.TypingError(msg)
if not type_can_asarray(c2):
msg = 'The argument "c2" must be array-like'
raise errors.TypingError(msg)
def impl(c1, c2):
arr1, arr2 = pu.as_series((c1, c2))
diff = len(arr2) - len(arr1)
if diff > 0:
zr = np.zeros(diff)
arr1 = np.concatenate((arr1, zr))
if diff < 0:
zr = np.zeros(-diff)
arr2 = np.concatenate((arr2, zr))
val = arr1 - arr2
return pu.trimseq(val)
return impl
@overload(poly.polymul)
def numpy_polymul(c1, c2):
if not type_can_asarray(c1):
msg = 'The argument "c1" must be array-like'
raise errors.TypingError(msg)
if not type_can_asarray(c2):
msg = 'The argument "c2" must be array-like'
raise errors.TypingError(msg)
def impl(c1, c2):
arr1, arr2 = pu.as_series((c1, c2))
val = np.convolve(arr1, arr2)
return pu.trimseq(val)
return impl
@overload(poly.polyval, prefer_literal=True)
def poly_polyval(x, c, tensor=True):
if not type_can_asarray(x):
msg = 'The argument "x" must be array-like'
raise errors.TypingError(msg)
if not type_can_asarray(c):
msg = 'The argument "c" must be array-like'
raise errors.TypingError(msg)
if not isinstance(tensor, (bool, types.BooleanLiteral)):
msg = 'The argument "tensor" must be boolean'
raise errors.RequireLiteralValue(msg)
res_dtype = _poly_result_dtype(c, x)
# Simulate new_shape = (1,) * np.ndim(x) in the general case
# If x is a number, new_shape is not used
# If x is a tuple or a list, then it's 1d hence new_shape=(1,)
x_nd_array = not isinstance(x, types.Number)
new_shape = (1,)
if isinstance(x, types.Array):
# If x is a np.array, then take its dimension
new_shape = (1,) * np.ndim(x)
if isinstance(tensor, bool):
tensor_arg = tensor
else:
tensor_arg = tensor.literal_value
def impl(x, c, tensor=True):
arr = np.asarray(c).astype(res_dtype)
inputs = np.asarray(x).astype(res_dtype)
if x_nd_array and tensor_arg:
arr = arr.reshape(arr.shape + new_shape)
l = len(arr)
y = arr[l - 1] + inputs * 0
for i in range(l - 1, 0, -1):
y = arr[i - 1] + y * inputs
return y
return impl
@overload(poly.polyint)
def poly_polyint(c, m=1):
if not type_can_asarray(c):
msg = 'The argument "c" must be array-like'
raise errors.TypingError(msg)
if not isinstance(m, (int, types.Integer)):
msg = 'The argument "m" must be an integer'
raise errors.TypingError(msg)
res_dtype = as_dtype(_poly_result_dtype(c))
if not np.issubdtype(res_dtype, np.number):
msg = f'Input dtype must be scalar. Found {res_dtype} instead'
raise errors.TypingError(msg)
is1D = ((np.ndim(c) == 1) or
(isinstance(c, (types.List, types.BaseTuple))
and isinstance(c.dtype, types.Number)))
def impl(c, m=1):
c = np.asarray(c).astype(res_dtype)
cdt = c.dtype
for i in range(m):
n = len(c)
tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt)
tmp[0] = c[0] * 0
tmp[1] = c[0]
for j in range(1, n):
tmp[j + 1] = c[j] / (j + 1)
c = tmp
if is1D:
return pu.trimseq(c)
else:
return c
return impl
@overload(poly.polydiv)
def numpy_polydiv(c1, c2):
if not type_can_asarray(c1):
msg = 'The argument "c1" must be array-like'
raise errors.TypingError(msg)
if not type_can_asarray(c2):
msg = 'The argument "c2" must be array-like'
raise errors.TypingError(msg)
def impl(c1, c2):
arr1, arr2 = pu.as_series((c1, c2))
if arr2[-1] == 0:
raise ZeroDivisionError()
l1 = len(arr1)
l2 = len(arr2)
if l1 < l2:
return arr1[:1] * 0, arr1
elif l2 == 1:
return arr1 / arr2[-1], arr1[:1] * 0
else:
dlen = l1 - l2
scl = arr2[-1]
arr2 = arr2[:-1] / scl
i = dlen
j = l1 - 1
while i >= 0:
arr1[i:j] -= arr2 * arr1[j]
i -= 1
j -= 1
return arr1[j + 1:] / scl, pu.trimseq(arr1[:j + 1])
return impl