ai-content-maker/.venv/Lib/site-packages/scipy/stats/tests/test_boost_ufuncs.py

48 lines
1.8 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import pytest
import numpy as np
from numpy.testing import assert_allclose
from scipy.stats import _boost
type_char_to_type_tol = {'f': (np.float32, 32*np.finfo(np.float32).eps),
'd': (np.float64, 32*np.finfo(np.float64).eps)}
# Each item in this list is
# (func, args, expected_value)
# All the values can be represented exactly, even with np.float32.
#
# This is not an exhaustive test data set of all the functions!
# It is a spot check of several functions, primarily for
# checking that the different data types are handled correctly.
test_data = [
(_boost._beta_cdf, (0.5, 2, 3), 0.6875),
(_boost._beta_ppf, (0.6875, 2, 3), 0.5),
(_boost._beta_pdf, (0.5, 2, 3), 1.5),
(_boost._beta_pdf, (0, 1, 5), 5.0),
(_boost._beta_pdf, (1, 5, 1), 5.0),
(_boost._beta_sf, (0.5, 2, 1), 0.75),
(_boost._beta_isf, (0.75, 2, 1), 0.5),
(_boost._binom_cdf, (1, 3, 0.5), 0.5),
(_boost._binom_pdf, (1, 4, 0.5), 0.25),
(_boost._hypergeom_cdf, (2, 3, 5, 6), 0.5),
(_boost._nbinom_cdf, (1, 4, 0.25), 0.015625),
(_boost._ncf_mean, (10, 12, 2.5), 1.5),
]
@pytest.mark.parametrize('func, args, expected', test_data)
def test_stats_boost_ufunc(func, args, expected):
type_sigs = func.types
type_chars = [sig.split('->')[-1] for sig in type_sigs]
for type_char in type_chars:
typ, rtol = type_char_to_type_tol[type_char]
args = [typ(arg) for arg in args]
# Harmless overflow warnings are a "feature" of some wrappers on some
# platforms. This test is about dtype and accuracy, so let's avoid false
# test failures cause by these warnings. See gh-17432.
with np.errstate(over='ignore'):
value = func(*args)
assert isinstance(value, typ)
assert_allclose(value, expected, rtol=rtol)