ai-content-maker/.venv/Lib/site-packages/torch/_inductor/debug.py

656 lines
21 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import collections
import contextlib
import cProfile
import dataclasses
import functools
import itertools
import logging
import os
import os.path
import pickle
import pstats
import shutil
import subprocess
from typing import Any, Dict, List, Optional
from unittest.mock import patch
from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled
import torch
from torch import fx as fx
from torch._dynamo.repro.after_aot import save_graph_repro, wrap_compiler_debug
from torch._dynamo.utils import get_debug_dir
from torch.fx.graph_module import GraphModule
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
from torch.fx.passes.tools_common import legalize_graph
from torch.utils._pytree import tree_map
from . import config, ir # noqa: F811, this is needed
from .scheduler import (
BaseSchedulerNode,
FusedSchedulerNode,
NopKernelSchedulerNode,
OutputNode,
SchedulerNode,
)
from .virtualized import V
log = logging.getLogger(__name__)
SchedulerNodeList = List[Any]
BufMeta = collections.namedtuple("BufMeta", ["name", "n_origin"])
GRAPHVIZ_COMMAND_SCALABLE = ["dot", "-Gnslimit=2", "-Gnslimit1=2", "-Gmaxiter=5000"]
@functools.lru_cache(None)
def has_dot() -> bool:
try:
subprocess.check_output(["which", "dot"], stderr=subprocess.PIPE)
return True
except subprocess.SubprocessError:
return False
def draw_buffers(nodes: List[BaseSchedulerNode], print_graph=False, fname=None):
"""
Draw a graph in fname.svg.
"""
if not has_dot():
log.warning("draw_buffers() requires `graphviz` package")
return
if fname is None:
fname = get_graph_being_compiled()
graph = create_fx_from_snodes(nodes)
for node in graph.nodes:
if "fusion_meta" not in node.meta:
continue
group = node.meta["fusion_meta"].group
if isinstance(group, tuple):
if isinstance(group[1], int):
group = (group[1],)
else:
group = group[1]
# gather meta data
dtype = None
if isinstance(node, ir.ComputedBuffer):
dtype = node.data.dtype
metadata = TensorMetadata(group, dtype, None, None, None, None, None) # type: ignore[arg-type]
node.meta["tensor_meta"] = metadata
if print_graph:
print(graph)
gm = GraphModule({}, graph)
legalize_graph(gm)
gm.graph.lint()
draw_graph(
gm, fname, clear_meta=False, dot_graph_shape=config.trace.dot_graph_shape
)
def create_fx_from_snodes(snodes: List[BaseSchedulerNode]) -> fx.Graph:
"""
Creates a FX Graph from a list of SchedulerNode objects.
"""
def get_fake_func(name):
def func1(*args):
return 0
func1.__name__ = name
return func1
FusionMeta = collections.namedtuple("FusionMeta", ["group", "snode", "type"])
buf_to_fx_node = {}
graph = torch.fx.Graph()
first_node = None
outputs = []
group: Any = None
# create call_function node for each Buffer and Kernel
for snode in snodes:
if snode.is_extern():
node_type = "extern"
group = node_type
elif snode.is_template():
node_type = "template"
group = node_type
elif isinstance(snode, NopKernelSchedulerNode):
node_type = "nop"
group = node_type
elif isinstance(snode, SchedulerNode):
node_type = "compute"
group = snode.group
elif isinstance(snode, FusedSchedulerNode):
node_type = "fused"
group = snode.group
else:
raise RuntimeError("Unknown node type")
fused_name = torch._inductor.utils.get_fused_kernel_name(
snode.get_nodes(), "original_aten"
)
func_name = f"{node_type}: {fused_name}"
node_func = get_fake_func(func_name)
kwargs = {}
if hasattr(snode, "get_device"):
kwargs = {"device": snode.get_device()}
fx_node = graph.call_function(node_func, args=(), kwargs=kwargs)
def in_output(snode):
if isinstance(snode, FusedSchedulerNode):
return any(in_output(x) for x in snode.snodes)
return any(isinstance(user.node, OutputNode) for user in snode.users)
if in_output(snode):
outputs.append(fx_node)
name = snode.get_name()
fx_node.name = name
fx_node.meta["fusion_meta"] = FusionMeta(group, snode, node_type)
if isinstance(snode, FusedSchedulerNode):
for x in snode.snodes:
buf_to_fx_node[x.get_name()] = fx_node
buf_to_fx_node[name] = fx_node
if first_node is None:
first_node = fx_node
# create edges between nodes
for snode in snodes:
name = snode.get_name()
deps = snode.read_writes.reads
fx_node = buf_to_fx_node[name]
new_args = []
for dep in deps:
if dep.name in buf_to_fx_node:
dep_node = buf_to_fx_node[dep.name]
else:
with graph.inserting_before(first_node):
dep_node = graph.placeholder(dep.name)
buf_to_fx_node[dep.name] = dep_node
new_args.append(dep_node)
fx_node.args = tuple(new_args)
graph.output(outputs[0] if len(outputs) == 1 else tuple(outputs))
return graph
def update_orig_fx_node_name_to_buf_name(
nodes: SchedulerNodeList,
node_name_to_buf_name: Dict[str, str],
parent_buf_name: Optional[str] = None,
n_origins: int = 0,
):
if nodes is None:
return
for node in nodes:
# for FusedSchedulerNode, traverse recursively into get_nodes()
buf_name = node.get_name()
children_nodes = node.get_nodes()
if children_nodes is not None and len(children_nodes) > 1:
update_orig_fx_node_name_to_buf_name(
children_nodes,
node_name_to_buf_name,
buf_name if parent_buf_name is None else parent_buf_name,
)
continue
else:
assert len(children_nodes) == 1 and children_nodes[0] == node
ir_node = node.node
if ir_node is None or ir_node.origins is None:
continue
for origin in ir_node.origins:
node_name = origin.name
# when buf1 and buf2 both have origin=node1
# we draw node1 according to buf1
if node_name not in node_name_to_buf_name:
node_name_to_buf_name[node_name] = (
buf_name if parent_buf_name is None else parent_buf_name
)
def get_node_name_to_buf_meta(node_name_to_buf_name: Dict[str, str]):
buf_name_to_n_node = {}
for node_name, buf_name in node_name_to_buf_name.items():
if buf_name not in buf_name_to_n_node:
buf_name_to_n_node[buf_name] = {node_name}
else:
buf_name_to_n_node[buf_name].add(node_name)
node_name_to_buf_meta = {}
for node_name, buf_name in node_name_to_buf_name.items():
n_node = len(buf_name_to_n_node[buf_name])
node_name_to_buf_meta[node_name] = BufMeta(buf_name, n_node)
return node_name_to_buf_meta
def annotate_orig_fx_with_snodes(
gm: torch.fx.GraphModule, snodes: SchedulerNodeList
) -> None:
"""
Creates a FX Graph from a list of SchedulerNode objects.
"""
node_name_to_buf_name: Dict[str, str] = {}
update_orig_fx_node_name_to_buf_name(snodes, node_name_to_buf_name)
if node_name_to_buf_name is None:
return
node_name_to_buf_meta = get_node_name_to_buf_meta(node_name_to_buf_name)
for node in gm.graph.nodes:
if node.name in node_name_to_buf_meta:
node.meta["buf_meta"] = node_name_to_buf_meta.get(node.name)
@contextlib.contextmanager
def enable_aot_logging():
compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
import torch._functorch.aot_autograd
log = logging.getLogger(torch._functorch.aot_autograd.__name__)
stack = contextlib.ExitStack()
if not compile_debug:
try:
yield
finally:
stack.close()
return
# Enable all graphs to be logged to a file by setting the flags to True
# and the log level of the file logger to DEBUG
stack.enter_context(patch("functorch.compile.config.debug_partitioner", True))
path = os.path.join(get_debug_dir(), "torchinductor")
os.makedirs(path, exist_ok=True)
fh = logging.FileHandler(
os.path.join(
path,
f"aot_{get_aot_graph_name()}_debug.log",
)
)
fh.setLevel(logging.DEBUG)
fh.setFormatter(
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
)
log.addHandler(fh)
try:
yield
finally:
log.removeHandler(fh)
stack.close()
class DebugContext:
_counter = itertools.count()
@staticmethod
def wrap(fn):
@functools.wraps(fn)
def inner(*args, **kwargs):
with DebugContext():
return fn(*args, **kwargs)
return wrap_compiler_debug(inner, compiler_name="inductor")
@staticmethod
def create_debug_dir(folder_name: str) -> Optional[str]:
debug_dir = config.trace.debug_dir or get_debug_dir()
for n in DebugContext._counter:
dirname = os.path.join(
debug_dir,
"torchinductor",
f"{folder_name}.{n}",
)
if not os.path.exists(dirname):
os.makedirs(dirname)
return dirname
return None
def __init__(self):
self._prof = None
self._path = None
self._stack = contextlib.ExitStack()
def copy(self, new_path: str):
if not self._path:
return
assert new_path.endswith(".debug"), new_path
if os.path.exists(new_path):
shutil.rmtree(new_path)
try:
shutil.copytree(self._path, new_path)
self._path = new_path
except OSError:
log.warning(
"Failed to copy debug files from %s to %s", self._path, new_path
)
pass
def fopen(self, filename: str, write_mode: str = "w", *args, **kwargs):
assert self._path
return open(os.path.join(self._path, filename), write_mode, *args, **kwargs)
@contextlib.contextmanager
def fopen_context(self, filename: str, write_mode: str = "w", *args, **kwargs):
assert self._path
with open(os.path.join(self._path, filename), write_mode, *args, **kwargs) as f:
yield f
def filename(self, suffix: str):
assert self._path
return os.path.join(self._path, suffix)
def upload_tar(self):
if config.trace.upload_tar is not None:
import tarfile
assert self._path
tar_file = os.path.join(
self._path, f"{os.path.basename(self._path)}.tar.gz"
)
with tarfile.open(tar_file, "w:gz") as tar:
tar.add(self._path, arcname=os.path.basename(self._path))
config.trace.upload_tar(tar_file)
def __enter__(self):
if config.debug:
log = logging.getLogger("torch._dynamo")
prev_level = log.level
log.setLevel(logging.DEBUG)
def reset_log_level(level):
log.setLevel(level)
self._stack.callback(reset_log_level, prev_level)
self._stack.enter_context(V.set_debug_handler(self))
if not config.trace.enabled:
return
self._path = self.create_debug_dir(get_aot_graph_name())
if config.trace.debug_log:
self._setup_log_capture("debug.log", logging.DEBUG)
if config.trace.info_log:
self._setup_log_capture("info.log", logging.INFO)
if config.trace.compile_profile:
self._prof = cProfile.Profile()
self._prof.enable()
def _setup_log_capture(self, filename: str, level: int):
log = logging.getLogger("torch._inductor")
fd = self._stack.enter_context(self.fopen(filename))
ch = logging.StreamHandler(fd)
ch.setLevel(level)
ch.setFormatter(
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
)
log.addHandler(ch)
log.setLevel(min(log.level, level))
self._stack.callback(log.removeHandler, ch)
def __exit__(self, exc_type, exc_val, exc_tb):
if self._prof:
self._prof.disable()
self._save_profile_data()
if self._path:
self.upload_tar()
log.warning("%s debug trace: %s", get_graph_being_compiled(), self._path)
self._stack.close()
def _save_profile_data(self):
assert self._prof
self._prof.dump_stats(self.filename("compile.prof"))
with self.fopen("compile.stats") as fd:
stats = pstats.Stats(self._prof, stream=fd)
stats.strip_dirs()
stats.sort_stats("cumtime")
stats.print_stats(100)
stats.sort_stats("tottime")
stats.print_stats(100)
def __getattr__(self, name):
if config.trace.enabled and getattr(config.trace, name):
try:
return getattr(DebugFormatter(self), name)
except Exception:
log.warning("Ignoring exception in debug code", exc_info=True)
else:
def ignored(*args, **kwargs):
pass
return ignored
class DebugFormatter:
def __init__(self, handler):
self.fopen = handler.fopen
self.fopen_context = handler.fopen_context
self.filename = handler.filename
self.handler = handler
def fx_graph(self, gm: torch.fx.GraphModule, inputs: List[torch.Tensor]):
with self.fopen("fx_graph_runnable.py") as fd:
save_graph_repro(fd, gm, inputs, "inductor")
with self.fopen("fx_graph_readable.py") as fd:
fd.write(gm.print_readable(print_output=False))
def fx_graph_transformed(
self, gm: torch.fx.GraphModule, inputs: List[torch.Tensor]
):
with self.fopen("fx_graph_transformed.py") as fd:
fd.write(gm.print_readable(print_output=False))
def ir_pre_fusion(self, nodes: SchedulerNodeList):
self._write_ir("ir_pre_fusion.txt", nodes)
def ir_post_fusion(self, nodes: SchedulerNodeList):
self._write_ir("ir_post_fusion.txt", nodes)
def _write_ir(self, filename: str, nodes: SchedulerNodeList):
with self.fopen(filename) as fd:
log.info("Writing debug ir to %s", fd.name)
for node in nodes:
fd.write(node.debug_str())
fd.write("\n\n\n")
def graph_diagram(self, nodes: SchedulerNodeList):
draw_buffers(nodes, fname=self.filename("graph_diagram.svg"))
def draw_orig_fx_graph(self, gm: torch.fx.GraphModule, nodes: SchedulerNodeList):
annotate_orig_fx_with_snodes(gm, nodes)
draw_graph(
gm,
fname=self.filename("orig_fx_graph_diagram.svg"),
clear_meta=False,
prog=GRAPHVIZ_COMMAND_SCALABLE,
parse_stack_trace=True,
dot_graph_shape=config.trace.dot_graph_shape,
)
def output_code(self, filename):
shutil.copy(filename, self.filename("output_code.py"))
def log_autotuning_results(
self,
name: str,
input_nodes: List[ir.IRNode],
timings: Dict["ChoiceCaller", float], # type: ignore[name-defined] # noqa: F821
elapse: float,
):
import json
from .ir import FixedLayout
def build_node_info(node: ir.IRNode):
if hasattr(node, "name"):
node_name = node.name
else:
node_name = ""
node_info = {
"name": node_name,
"type": type(node).__name__,
}
try:
layout = node.get_layout()
if isinstance(layout, FixedLayout):
offset = 0
try:
offset = int(layout.offset)
except Exception:
try:
offset = V.graph.sizevars.size_hint(
layout.offset, fallback=0
)
except Exception:
pass
static_layout = FixedLayout(
layout.device,
dtype=layout.dtype,
size=list(V.graph.sizevars.size_hints(layout.size)),
stride=list(V.graph.sizevars.size_hints(layout.stride)),
offset=offset,
)
node_info["layout"] = str(static_layout)
else:
node_info["layout"] = str(node.get_layout())
except Exception as e:
pass
try:
node_info["dtype"] = str(node.get_dtype())
except Exception as e:
pass
try:
node_info["device"] = str(node.get_device())
except Exception as e:
pass
try:
node_info["stride"] = str(
V.graph.sizevars.size_hints(node.get_stride())
)
except Exception as e:
pass
try:
node_info["size"] = str(V.graph.sizevars.size_hints(node.get_size()))
except Exception as e:
pass
try:
node_info["numel"] = str(V.graph.sizevars.size_hint(node.get_numel()))
except Exception as e:
pass
if hasattr(node, "data") and isinstance(node.data, ir.IRNode):
node_info["data"] = build_node_info(node.data)
return node_info
general_properties = {
"op_name": name,
"cuda_device_name": torch.cuda.get_device_name(),
"cuda_device_count": torch.cuda.device_count(),
"input_nodes": [build_node_info(node) for node in input_nodes],
"autotuning_time": elapse,
}
with self.fopen_context(
"autotuning_result_json_list.txt", "at", encoding="utf-8"
) as fd:
for caller, time in timings.items():
info_dict = dict(caller.info_dict())
info_dict.update(general_properties)
info_dict["benchmark_result"] = time
json.dump(info_dict, fd)
fd.write("\n")
@dataclasses.dataclass
class TensorMetadataHolder:
tensor_metadata: TensorMetadata
device: torch.device
save_args_cnt = itertools.count()
def save_args_for_compile_fx_inner(*args, **kwargs):
"""
This function is used to save arguments for a compile_fx_inner function call
to the file system. Later on one can replay the compile_fx_inner call
with the saved arguments using load_args_and_run_compile_fx_inner.
"""
folder = "/tmp/inductor_saved_args"
if not os.path.exists(folder):
os.mkdir(folder)
def handle_tensor(x):
"""
Pickle FakeTensor will result in error:
AttributeError: Can't pickle local object 'WeakValueDictionary.__init__.<locals>.remove'
Convert all Tensor to metadata. This may also makes pickle faster.
"""
if isinstance(x, torch.Tensor):
return TensorMetadataHolder(_extract_tensor_metadata(x), x.device)
else:
return x
args_to_save, kwargs_to_save = tree_map(handle_tensor, (args, kwargs))
fn_name = "compile_fx_inner"
path = f"{folder}/{fn_name}_{next(save_args_cnt)}.pkl"
with open(path, "wb") as f:
pickle.dump((args_to_save, kwargs_to_save), f)
if log.isEnabledFor(logging.DEBUG):
message = f"""
Arguments for a compile_fx_inner call is saved to {path}. To replay the call,
run the following:
from torch._inductor.debug import load_args_and_run_compile_fx_inner
load_args_and_run_compile_fx_inner({path!r})
"""
# call print rather than log.debug. log.debug will print message
# prefix for each line which makes the code snippet harder to be
# copied.
# Not a big deal since the code is already been guarded by checking
# the log level.
print(message)
def load_args_and_run_compile_fx_inner(path: str):
from torch._inductor.compile_fx import compile_fx_inner
with open(path, "rb") as f:
args, kwargs = pickle.load(f)
def handle_tensor(x):
if isinstance(x, TensorMetadataHolder):
return torch._dynamo.testing.rand_strided(
x.tensor_metadata.shape,
x.tensor_metadata.stride,
x.tensor_metadata.dtype,
x.device,
)
else:
return x
fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
with fake_mode, config.patch("save_args", False):
args, kwargs = tree_map(handle_tensor, (args, kwargs))
return compile_fx_inner(*args, **kwargs)