ai-content-maker/.venv/Lib/site-packages/transformers/benchmark/benchmark_tf.py

304 lines
13 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Benchmarking the library on inference and training in PyTorch.
"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_py3nvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_py3nvml_available():
import py3nvml.py3nvml as nvml
logger = logging.get_logger(__name__)
def run_with_tf_optimizations(do_eager_mode: bool, use_xla: bool):
def run_func(func):
@wraps(func)
def run_in_eager_mode(*args, **kwargs):
return func(*args, **kwargs)
@wraps(func)
@tf.function(experimental_compile=use_xla)
def run_in_graph_mode(*args, **kwargs):
return func(*args, **kwargs)
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
"Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`."
)
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def random_input_ids(batch_size: int, sequence_length: int, vocab_size: int) -> ["tf.Tensor"]:
rng = random.Random()
values = [rng.randint(0, vocab_size - 1) for i in range(batch_size * sequence_length)]
return tf.constant(values, shape=(batch_size, sequence_length), dtype=tf.int32)
class TensorFlowBenchmark(Benchmark):
args: TensorFlowBenchmarkArguments
configs: PretrainedConfig
framework: str = "TensorFlow"
@property
def framework_version(self):
return tf.__version__
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
# initialize GPU on separate process
strategy = self.args.strategy
if strategy is None:
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
return self._measure_speed(_inference)
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
strategy = self.args.strategy
if strategy is None:
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
return self._measure_speed(_train)
def _inference_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
# initialize GPU on separate process
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
strategy = self.args.strategy
if strategy is None:
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
return self._measure_memory(_inference)
def _train_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
strategy = self.args.strategy
if strategy is None:
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
return self._measure_memory(_train)
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
config = self.config_dict[model_name]
if self.args.fp16:
raise NotImplementedError("Mixed precision is currently not supported.")
has_model_class_in_config = (
hasattr(config, "architectures")
and isinstance(config.architectures, list)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
transformers_module = __import__("transformers", fromlist=[model_class])
model_cls = getattr(transformers_module, model_class)
model = model_cls(config)
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
)
else:
model = TF_MODEL_MAPPING[config.__class__](config)
# encoder-decoder has vocab size saved differently
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
def encoder_decoder_forward():
return model(input_ids, decoder_input_ids=input_ids, training=False)
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
def encoder_forward():
return model(input_ids, training=False)
_inference = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
config = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.")
if self.args.fp16:
raise NotImplementedError("Mixed precision is currently not supported.")
has_model_class_in_config = (
hasattr(config, "architectures")
and isinstance(config.architectures, list)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
transformers_module = __import__("transformers", fromlist=[model_class])
model_cls = getattr(transformers_module, model_class)
model = model_cls(config)
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
)
else:
model = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
# encoder-decoder has vocab size saved differently
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
def encoder_decoder_train():
loss = model(input_ids, decoder_input_ids=input_ids, labels=input_ids, training=True)[0]
gradients = tf.gradients(loss, model.trainable_variables)
return gradients
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
def encoder_train():
loss = model(input_ids, labels=input_ids, training=True)[0]
gradients = tf.gradients(loss, model.trainable_variables)
return gradients
_train = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def _measure_speed(self, func) -> float:
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("Do inference on TPU. Running model 5 times to stabilize compilation")
timeit.repeat(func, repeat=1, number=5)
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
runtimes = timeit.repeat(
func,
repeat=self.args.repeat,
number=10,
)
return min(runtimes) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}")
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
logger.info(
"Note that TensorFlow allocates more memory than "
"it might need to speed up computation. "
"The memory reported here corresponds to the memory "
"reported by `nvidia-smi`, which can vary depending "
"on total available memory on the GPU that is used."
)
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"
" consumption line by line."
)
trace = start_memory_tracing("transformers")
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"
" with `args.memory=False`"
)
elif self.args.is_gpu:
# gpu
if not is_py3nvml_available():
logger.warning(
"py3nvml not installed, we won't log GPU memory usage. "
"Install py3nvml (pip install py3nvml) to log information about GPU."
)
memory = "N/A"
else:
logger.info(
"Measuring total GPU usage on GPU device. Make sure to not have additional processes"
" running on the same GPU."
)
# init nvml
nvml.nvmlInit()
func()
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
max_bytes_in_use = meminfo.used
memory = Memory(max_bytes_in_use)
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"When enabling line by line tracing, the max peak memory for CPU is inaccurate in"
" TensorFlow."
)
memory = None
else:
memory_bytes = measure_peak_memory_cpu(func)
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
if self.args.trace_memory_line_by_line:
summary = stop_memory_tracing(trace)
if memory is None:
memory = summary.total
else:
summary = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}")
return "N/A", None