304 lines
13 KiB
Python
304 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Benchmarking the library on inference and training in PyTorch.
|
|
"""
|
|
|
|
|
|
import random
|
|
import timeit
|
|
from functools import wraps
|
|
from typing import Callable, Optional
|
|
|
|
from ..configuration_utils import PretrainedConfig
|
|
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
|
|
from ..utils import is_py3nvml_available, is_tf_available, logging
|
|
from .benchmark_utils import (
|
|
Benchmark,
|
|
Memory,
|
|
MemorySummary,
|
|
measure_peak_memory_cpu,
|
|
start_memory_tracing,
|
|
stop_memory_tracing,
|
|
)
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
|
|
|
|
from .benchmark_args_tf import TensorFlowBenchmarkArguments
|
|
|
|
if is_py3nvml_available():
|
|
import py3nvml.py3nvml as nvml
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def run_with_tf_optimizations(do_eager_mode: bool, use_xla: bool):
|
|
def run_func(func):
|
|
@wraps(func)
|
|
def run_in_eager_mode(*args, **kwargs):
|
|
return func(*args, **kwargs)
|
|
|
|
@wraps(func)
|
|
@tf.function(experimental_compile=use_xla)
|
|
def run_in_graph_mode(*args, **kwargs):
|
|
return func(*args, **kwargs)
|
|
|
|
if do_eager_mode is True:
|
|
if use_xla is not False:
|
|
raise ValueError(
|
|
"Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`."
|
|
)
|
|
return run_in_eager_mode
|
|
else:
|
|
return run_in_graph_mode
|
|
|
|
return run_func
|
|
|
|
|
|
def random_input_ids(batch_size: int, sequence_length: int, vocab_size: int) -> ["tf.Tensor"]:
|
|
rng = random.Random()
|
|
values = [rng.randint(0, vocab_size - 1) for i in range(batch_size * sequence_length)]
|
|
return tf.constant(values, shape=(batch_size, sequence_length), dtype=tf.int32)
|
|
|
|
|
|
class TensorFlowBenchmark(Benchmark):
|
|
args: TensorFlowBenchmarkArguments
|
|
configs: PretrainedConfig
|
|
framework: str = "TensorFlow"
|
|
|
|
@property
|
|
def framework_version(self):
|
|
return tf.__version__
|
|
|
|
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
|
# initialize GPU on separate process
|
|
strategy = self.args.strategy
|
|
if strategy is None:
|
|
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
|
|
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
|
return self._measure_speed(_inference)
|
|
|
|
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
|
strategy = self.args.strategy
|
|
if strategy is None:
|
|
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
|
|
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
|
return self._measure_speed(_train)
|
|
|
|
def _inference_memory(
|
|
self, model_name: str, batch_size: int, sequence_length: int
|
|
) -> [Memory, Optional[MemorySummary]]:
|
|
# initialize GPU on separate process
|
|
if self.args.is_gpu:
|
|
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
|
|
strategy = self.args.strategy
|
|
if strategy is None:
|
|
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
|
|
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
|
return self._measure_memory(_inference)
|
|
|
|
def _train_memory(
|
|
self, model_name: str, batch_size: int, sequence_length: int
|
|
) -> [Memory, Optional[MemorySummary]]:
|
|
if self.args.is_gpu:
|
|
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
|
|
strategy = self.args.strategy
|
|
if strategy is None:
|
|
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
|
|
|
|
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
|
return self._measure_memory(_train)
|
|
|
|
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
|
config = self.config_dict[model_name]
|
|
|
|
if self.args.fp16:
|
|
raise NotImplementedError("Mixed precision is currently not supported.")
|
|
|
|
has_model_class_in_config = (
|
|
hasattr(config, "architectures")
|
|
and isinstance(config.architectures, list)
|
|
and len(config.architectures) > 0
|
|
)
|
|
if not self.args.only_pretrain_model and has_model_class_in_config:
|
|
try:
|
|
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
|
|
transformers_module = __import__("transformers", fromlist=[model_class])
|
|
model_cls = getattr(transformers_module, model_class)
|
|
model = model_cls(config)
|
|
except ImportError:
|
|
raise ImportError(
|
|
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
|
|
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
|
)
|
|
else:
|
|
model = TF_MODEL_MAPPING[config.__class__](config)
|
|
|
|
# encoder-decoder has vocab size saved differently
|
|
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
|
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
|
|
|
|
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
|
def encoder_decoder_forward():
|
|
return model(input_ids, decoder_input_ids=input_ids, training=False)
|
|
|
|
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
|
def encoder_forward():
|
|
return model(input_ids, training=False)
|
|
|
|
_inference = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
|
|
|
|
return _inference
|
|
|
|
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
|
config = self.config_dict[model_name]
|
|
|
|
if self.args.eager_mode is not False:
|
|
raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.")
|
|
|
|
if self.args.fp16:
|
|
raise NotImplementedError("Mixed precision is currently not supported.")
|
|
|
|
has_model_class_in_config = (
|
|
hasattr(config, "architectures")
|
|
and isinstance(config.architectures, list)
|
|
and len(config.architectures) > 0
|
|
)
|
|
if not self.args.only_pretrain_model and has_model_class_in_config:
|
|
try:
|
|
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
|
|
transformers_module = __import__("transformers", fromlist=[model_class])
|
|
model_cls = getattr(transformers_module, model_class)
|
|
model = model_cls(config)
|
|
except ImportError:
|
|
raise ImportError(
|
|
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
|
|
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
|
)
|
|
else:
|
|
model = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
|
|
|
|
# encoder-decoder has vocab size saved differently
|
|
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
|
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
|
|
|
|
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
|
def encoder_decoder_train():
|
|
loss = model(input_ids, decoder_input_ids=input_ids, labels=input_ids, training=True)[0]
|
|
gradients = tf.gradients(loss, model.trainable_variables)
|
|
return gradients
|
|
|
|
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
|
def encoder_train():
|
|
loss = model(input_ids, labels=input_ids, training=True)[0]
|
|
gradients = tf.gradients(loss, model.trainable_variables)
|
|
return gradients
|
|
|
|
_train = encoder_decoder_train if config.is_encoder_decoder else encoder_train
|
|
|
|
return _train
|
|
|
|
def _measure_speed(self, func) -> float:
|
|
with self.args.strategy.scope():
|
|
try:
|
|
if self.args.is_tpu or self.args.use_xla:
|
|
# run additional 10 times to stabilize compilation for tpu
|
|
logger.info("Do inference on TPU. Running model 5 times to stabilize compilation")
|
|
timeit.repeat(func, repeat=1, number=5)
|
|
|
|
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
|
|
runtimes = timeit.repeat(
|
|
func,
|
|
repeat=self.args.repeat,
|
|
number=10,
|
|
)
|
|
|
|
return min(runtimes) / 10.0
|
|
except ResourceExhaustedError as e:
|
|
self.print_fn(f"Doesn't fit on GPU. {e}")
|
|
|
|
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
|
|
logger.info(
|
|
"Note that TensorFlow allocates more memory than "
|
|
"it might need to speed up computation. "
|
|
"The memory reported here corresponds to the memory "
|
|
"reported by `nvidia-smi`, which can vary depending "
|
|
"on total available memory on the GPU that is used."
|
|
)
|
|
with self.args.strategy.scope():
|
|
try:
|
|
if self.args.trace_memory_line_by_line:
|
|
if not self.args.eager_mode:
|
|
raise ValueError(
|
|
"`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"
|
|
" consumption line by line."
|
|
)
|
|
trace = start_memory_tracing("transformers")
|
|
|
|
if self.args.is_tpu:
|
|
# tpu
|
|
raise NotImplementedError(
|
|
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"
|
|
" with `args.memory=False`"
|
|
)
|
|
elif self.args.is_gpu:
|
|
# gpu
|
|
if not is_py3nvml_available():
|
|
logger.warning(
|
|
"py3nvml not installed, we won't log GPU memory usage. "
|
|
"Install py3nvml (pip install py3nvml) to log information about GPU."
|
|
)
|
|
memory = "N/A"
|
|
else:
|
|
logger.info(
|
|
"Measuring total GPU usage on GPU device. Make sure to not have additional processes"
|
|
" running on the same GPU."
|
|
)
|
|
# init nvml
|
|
nvml.nvmlInit()
|
|
func()
|
|
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
|
|
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
|
|
max_bytes_in_use = meminfo.used
|
|
memory = Memory(max_bytes_in_use)
|
|
# shutdown nvml
|
|
nvml.nvmlShutdown()
|
|
else:
|
|
# cpu
|
|
if self.args.trace_memory_line_by_line:
|
|
logger.info(
|
|
"When enabling line by line tracing, the max peak memory for CPU is inaccurate in"
|
|
" TensorFlow."
|
|
)
|
|
memory = None
|
|
else:
|
|
memory_bytes = measure_peak_memory_cpu(func)
|
|
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
|
|
if self.args.trace_memory_line_by_line:
|
|
summary = stop_memory_tracing(trace)
|
|
if memory is None:
|
|
memory = summary.total
|
|
else:
|
|
summary = None
|
|
|
|
return memory, summary
|
|
except ResourceExhaustedError as e:
|
|
self.print_fn(f"Doesn't fit on GPU. {e}")
|
|
return "N/A", None
|