2452 lines
114 KiB
Python
2452 lines
114 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2021 Facebook AI Research The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch DETR model."""
|
||
|
|
||
|
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
from torch import Tensor, nn
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
|
||
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions, Seq2SeqModelOutput
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
is_accelerate_available,
|
||
|
is_scipy_available,
|
||
|
is_timm_available,
|
||
|
is_vision_available,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
requires_backends,
|
||
|
)
|
||
|
from ...utils.backbone_utils import load_backbone
|
||
|
from .configuration_detr import DetrConfig
|
||
|
|
||
|
|
||
|
if is_accelerate_available():
|
||
|
from accelerate import PartialState
|
||
|
from accelerate.utils import reduce
|
||
|
|
||
|
if is_scipy_available():
|
||
|
from scipy.optimize import linear_sum_assignment
|
||
|
|
||
|
if is_timm_available():
|
||
|
from timm import create_model
|
||
|
|
||
|
if is_vision_available():
|
||
|
from transformers.image_transforms import center_to_corners_format
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CONFIG_FOR_DOC = "DetrConfig"
|
||
|
_CHECKPOINT_FOR_DOC = "facebook/detr-resnet-50"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import DETR_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DetrDecoderOutput(BaseModelOutputWithCrossAttentions):
|
||
|
"""
|
||
|
Base class for outputs of the DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions,
|
||
|
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
|
||
|
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
||
|
plus the initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
||
|
the self-attention heads.
|
||
|
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
||
|
used to compute the weighted average in the cross-attention heads.
|
||
|
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
|
||
|
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
|
||
|
layernorm.
|
||
|
"""
|
||
|
|
||
|
intermediate_hidden_states: Optional[torch.FloatTensor] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DetrModelOutput(Seq2SeqModelOutput):
|
||
|
"""
|
||
|
Base class for outputs of the DETR encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput,
|
||
|
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
|
||
|
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
||
|
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
|
||
|
layer plus the initial embedding outputs.
|
||
|
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
|
||
|
weighted average in the self-attention heads.
|
||
|
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
||
|
used to compute the weighted average in the cross-attention heads.
|
||
|
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder of the model.
|
||
|
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
|
||
|
layer plus the initial embedding outputs.
|
||
|
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
|
||
|
weighted average in the self-attention heads.
|
||
|
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
|
||
|
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
|
||
|
layernorm.
|
||
|
"""
|
||
|
|
||
|
intermediate_hidden_states: Optional[torch.FloatTensor] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DetrObjectDetectionOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`DetrForObjectDetection`].
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
|
||
|
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
|
||
|
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
|
||
|
scale-invariant IoU loss.
|
||
|
loss_dict (`Dict`, *optional*):
|
||
|
A dictionary containing the individual losses. Useful for logging.
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
|
||
|
Classification logits (including no-object) for all queries.
|
||
|
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
||
|
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
|
||
|
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
|
||
|
possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the
|
||
|
unnormalized bounding boxes.
|
||
|
auxiliary_outputs (`list[Dict]`, *optional*):
|
||
|
Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
|
||
|
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
|
||
|
`pred_boxes`) for each decoder layer.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
||
|
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
|
||
|
layer plus the initial embedding outputs.
|
||
|
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
|
||
|
weighted average in the self-attention heads.
|
||
|
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
||
|
used to compute the weighted average in the cross-attention heads.
|
||
|
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder of the model.
|
||
|
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
|
||
|
layer plus the initial embedding outputs.
|
||
|
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
|
||
|
weighted average in the self-attention heads.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
loss_dict: Optional[Dict] = None
|
||
|
logits: torch.FloatTensor = None
|
||
|
pred_boxes: torch.FloatTensor = None
|
||
|
auxiliary_outputs: Optional[List[Dict]] = None
|
||
|
last_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DetrSegmentationOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`DetrForSegmentation`].
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
|
||
|
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
|
||
|
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
|
||
|
scale-invariant IoU loss.
|
||
|
loss_dict (`Dict`, *optional*):
|
||
|
A dictionary containing the individual losses. Useful for logging.
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
|
||
|
Classification logits (including no-object) for all queries.
|
||
|
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
||
|
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
|
||
|
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
|
||
|
possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the
|
||
|
unnormalized bounding boxes.
|
||
|
pred_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height/4, width/4)`):
|
||
|
Segmentation masks logits for all queries. See also
|
||
|
[`~DetrImageProcessor.post_process_semantic_segmentation`] or
|
||
|
[`~DetrImageProcessor.post_process_instance_segmentation`]
|
||
|
[`~DetrImageProcessor.post_process_panoptic_segmentation`] to evaluate semantic, instance and panoptic
|
||
|
segmentation masks respectively.
|
||
|
auxiliary_outputs (`list[Dict]`, *optional*):
|
||
|
Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
|
||
|
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
|
||
|
`pred_boxes`) for each decoder layer.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
||
|
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
|
||
|
layer plus the initial embedding outputs.
|
||
|
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
|
||
|
weighted average in the self-attention heads.
|
||
|
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
||
|
used to compute the weighted average in the cross-attention heads.
|
||
|
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder of the model.
|
||
|
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
|
||
|
layer plus the initial embedding outputs.
|
||
|
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
|
||
|
weighted average in the self-attention heads.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
loss_dict: Optional[Dict] = None
|
||
|
logits: torch.FloatTensor = None
|
||
|
pred_boxes: torch.FloatTensor = None
|
||
|
pred_masks: torch.FloatTensor = None
|
||
|
auxiliary_outputs: Optional[List[Dict]] = None
|
||
|
last_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
# BELOW: utilities copied from
|
||
|
# https://github.com/facebookresearch/detr/blob/master/backbone.py
|
||
|
class DetrFrozenBatchNorm2d(nn.Module):
|
||
|
"""
|
||
|
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
||
|
|
||
|
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
|
||
|
torchvision.models.resnet[18,34,50,101] produce nans.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, n):
|
||
|
super().__init__()
|
||
|
self.register_buffer("weight", torch.ones(n))
|
||
|
self.register_buffer("bias", torch.zeros(n))
|
||
|
self.register_buffer("running_mean", torch.zeros(n))
|
||
|
self.register_buffer("running_var", torch.ones(n))
|
||
|
|
||
|
def _load_from_state_dict(
|
||
|
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||
|
):
|
||
|
num_batches_tracked_key = prefix + "num_batches_tracked"
|
||
|
if num_batches_tracked_key in state_dict:
|
||
|
del state_dict[num_batches_tracked_key]
|
||
|
|
||
|
super()._load_from_state_dict(
|
||
|
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
# move reshapes to the beginning
|
||
|
# to make it user-friendly
|
||
|
weight = self.weight.reshape(1, -1, 1, 1)
|
||
|
bias = self.bias.reshape(1, -1, 1, 1)
|
||
|
running_var = self.running_var.reshape(1, -1, 1, 1)
|
||
|
running_mean = self.running_mean.reshape(1, -1, 1, 1)
|
||
|
epsilon = 1e-5
|
||
|
scale = weight * (running_var + epsilon).rsqrt()
|
||
|
bias = bias - running_mean * scale
|
||
|
return x * scale + bias
|
||
|
|
||
|
|
||
|
def replace_batch_norm(model):
|
||
|
r"""
|
||
|
Recursively replace all `torch.nn.BatchNorm2d` with `DetrFrozenBatchNorm2d`.
|
||
|
|
||
|
Args:
|
||
|
model (torch.nn.Module):
|
||
|
input model
|
||
|
"""
|
||
|
for name, module in model.named_children():
|
||
|
if isinstance(module, nn.BatchNorm2d):
|
||
|
new_module = DetrFrozenBatchNorm2d(module.num_features)
|
||
|
|
||
|
if not module.weight.device == torch.device("meta"):
|
||
|
new_module.weight.data.copy_(module.weight)
|
||
|
new_module.bias.data.copy_(module.bias)
|
||
|
new_module.running_mean.data.copy_(module.running_mean)
|
||
|
new_module.running_var.data.copy_(module.running_var)
|
||
|
|
||
|
model._modules[name] = new_module
|
||
|
|
||
|
if len(list(module.children())) > 0:
|
||
|
replace_batch_norm(module)
|
||
|
|
||
|
|
||
|
class DetrConvEncoder(nn.Module):
|
||
|
"""
|
||
|
Convolutional backbone, using either the AutoBackbone API or one from the timm library.
|
||
|
|
||
|
nn.BatchNorm2d layers are replaced by DetrFrozenBatchNorm2d as defined above.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.config = config
|
||
|
|
||
|
if config.use_timm_backbone:
|
||
|
requires_backends(self, ["timm"])
|
||
|
kwargs = {}
|
||
|
if config.dilation:
|
||
|
kwargs["output_stride"] = 16
|
||
|
backbone = create_model(
|
||
|
config.backbone,
|
||
|
pretrained=config.use_pretrained_backbone,
|
||
|
features_only=True,
|
||
|
out_indices=(1, 2, 3, 4),
|
||
|
in_chans=config.num_channels,
|
||
|
**kwargs,
|
||
|
)
|
||
|
else:
|
||
|
backbone = load_backbone(config)
|
||
|
|
||
|
# replace batch norm by frozen batch norm
|
||
|
with torch.no_grad():
|
||
|
replace_batch_norm(backbone)
|
||
|
self.model = backbone
|
||
|
self.intermediate_channel_sizes = (
|
||
|
self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
|
||
|
)
|
||
|
|
||
|
backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type
|
||
|
if "resnet" in backbone_model_type:
|
||
|
for name, parameter in self.model.named_parameters():
|
||
|
if config.use_timm_backbone:
|
||
|
if "layer2" not in name and "layer3" not in name and "layer4" not in name:
|
||
|
parameter.requires_grad_(False)
|
||
|
else:
|
||
|
if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
|
||
|
parameter.requires_grad_(False)
|
||
|
|
||
|
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
|
||
|
# send pixel_values through the model to get list of feature maps
|
||
|
features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps
|
||
|
|
||
|
out = []
|
||
|
for feature_map in features:
|
||
|
# downsample pixel_mask to match shape of corresponding feature_map
|
||
|
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
|
||
|
out.append((feature_map, mask))
|
||
|
return out
|
||
|
|
||
|
|
||
|
class DetrConvModel(nn.Module):
|
||
|
"""
|
||
|
This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, conv_encoder, position_embedding):
|
||
|
super().__init__()
|
||
|
self.conv_encoder = conv_encoder
|
||
|
self.position_embedding = position_embedding
|
||
|
|
||
|
def forward(self, pixel_values, pixel_mask):
|
||
|
# send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
|
||
|
out = self.conv_encoder(pixel_values, pixel_mask)
|
||
|
pos = []
|
||
|
for feature_map, mask in out:
|
||
|
# position encoding
|
||
|
pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))
|
||
|
|
||
|
return out, pos
|
||
|
|
||
|
|
||
|
class DetrSinePositionEmbedding(nn.Module):
|
||
|
"""
|
||
|
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
|
||
|
need paper, generalized to work on images.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None):
|
||
|
super().__init__()
|
||
|
self.embedding_dim = embedding_dim
|
||
|
self.temperature = temperature
|
||
|
self.normalize = normalize
|
||
|
if scale is not None and normalize is False:
|
||
|
raise ValueError("normalize should be True if scale is passed")
|
||
|
if scale is None:
|
||
|
scale = 2 * math.pi
|
||
|
self.scale = scale
|
||
|
|
||
|
def forward(self, pixel_values, pixel_mask):
|
||
|
if pixel_mask is None:
|
||
|
raise ValueError("No pixel mask provided")
|
||
|
y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
|
||
|
x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
|
||
|
if self.normalize:
|
||
|
y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale
|
||
|
x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale
|
||
|
|
||
|
dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float()
|
||
|
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)
|
||
|
|
||
|
pos_x = x_embed[:, :, :, None] / dim_t
|
||
|
pos_y = y_embed[:, :, :, None] / dim_t
|
||
|
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||
|
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
||
|
return pos
|
||
|
|
||
|
|
||
|
class DetrLearnedPositionEmbedding(nn.Module):
|
||
|
"""
|
||
|
This module learns positional embeddings up to a fixed maximum size.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, embedding_dim=256):
|
||
|
super().__init__()
|
||
|
self.row_embeddings = nn.Embedding(50, embedding_dim)
|
||
|
self.column_embeddings = nn.Embedding(50, embedding_dim)
|
||
|
|
||
|
def forward(self, pixel_values, pixel_mask=None):
|
||
|
height, width = pixel_values.shape[-2:]
|
||
|
width_values = torch.arange(width, device=pixel_values.device)
|
||
|
height_values = torch.arange(height, device=pixel_values.device)
|
||
|
x_emb = self.column_embeddings(width_values)
|
||
|
y_emb = self.row_embeddings(height_values)
|
||
|
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
|
||
|
pos = pos.permute(2, 0, 1)
|
||
|
pos = pos.unsqueeze(0)
|
||
|
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
|
||
|
return pos
|
||
|
|
||
|
|
||
|
def build_position_encoding(config):
|
||
|
n_steps = config.d_model // 2
|
||
|
if config.position_embedding_type == "sine":
|
||
|
# TODO find a better way of exposing other arguments
|
||
|
position_embedding = DetrSinePositionEmbedding(n_steps, normalize=True)
|
||
|
elif config.position_embedding_type == "learned":
|
||
|
position_embedding = DetrLearnedPositionEmbedding(n_steps)
|
||
|
else:
|
||
|
raise ValueError(f"Not supported {config.position_embedding_type}")
|
||
|
|
||
|
return position_embedding
|
||
|
|
||
|
|
||
|
class DetrAttention(nn.Module):
|
||
|
"""
|
||
|
Multi-headed attention from 'Attention Is All You Need' paper.
|
||
|
|
||
|
Here, we add position embeddings to the queries and keys (as explained in the DETR paper).
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int,
|
||
|
num_heads: int,
|
||
|
dropout: float = 0.0,
|
||
|
bias: bool = True,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.num_heads = num_heads
|
||
|
self.dropout = dropout
|
||
|
self.head_dim = embed_dim // num_heads
|
||
|
if self.head_dim * num_heads != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||
|
f" {num_heads})."
|
||
|
)
|
||
|
self.scaling = self.head_dim**-0.5
|
||
|
|
||
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
|
||
|
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs):
|
||
|
position_embeddings = kwargs.pop("position_embeddings", None)
|
||
|
|
||
|
if kwargs:
|
||
|
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||
|
|
||
|
if position_embeddings is not None and object_queries is not None:
|
||
|
raise ValueError(
|
||
|
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||
|
)
|
||
|
|
||
|
if position_embeddings is not None:
|
||
|
logger.warning_once(
|
||
|
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||
|
)
|
||
|
object_queries = position_embeddings
|
||
|
|
||
|
return tensor if object_queries is None else tensor + object_queries
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
object_queries: Optional[torch.Tensor] = None,
|
||
|
key_value_states: Optional[torch.Tensor] = None,
|
||
|
spatial_position_embeddings: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
**kwargs,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
position_embeddings = kwargs.pop("position_ebmeddings", None)
|
||
|
key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None)
|
||
|
|
||
|
if kwargs:
|
||
|
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||
|
|
||
|
if position_embeddings is not None and object_queries is not None:
|
||
|
raise ValueError(
|
||
|
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||
|
)
|
||
|
|
||
|
if key_value_position_embeddings is not None and spatial_position_embeddings is not None:
|
||
|
raise ValueError(
|
||
|
"Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings"
|
||
|
)
|
||
|
|
||
|
if position_embeddings is not None:
|
||
|
logger.warning_once(
|
||
|
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||
|
)
|
||
|
object_queries = position_embeddings
|
||
|
|
||
|
if key_value_position_embeddings is not None:
|
||
|
logger.warning_once(
|
||
|
"key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead"
|
||
|
)
|
||
|
spatial_position_embeddings = key_value_position_embeddings
|
||
|
|
||
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
||
|
# for the decoder
|
||
|
is_cross_attention = key_value_states is not None
|
||
|
batch_size, target_len, embed_dim = hidden_states.size()
|
||
|
|
||
|
# add position embeddings to the hidden states before projecting to queries and keys
|
||
|
if object_queries is not None:
|
||
|
hidden_states_original = hidden_states
|
||
|
hidden_states = self.with_pos_embed(hidden_states, object_queries)
|
||
|
|
||
|
# add key-value position embeddings to the key value states
|
||
|
if spatial_position_embeddings is not None:
|
||
|
key_value_states_original = key_value_states
|
||
|
key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings)
|
||
|
|
||
|
# get query proj
|
||
|
query_states = self.q_proj(hidden_states) * self.scaling
|
||
|
# get key, value proj
|
||
|
if is_cross_attention:
|
||
|
# cross_attentions
|
||
|
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
|
||
|
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
|
||
|
else:
|
||
|
# self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
|
||
|
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
|
||
|
|
||
|
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
|
||
|
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
|
||
|
key_states = key_states.view(*proj_shape)
|
||
|
value_states = value_states.view(*proj_shape)
|
||
|
|
||
|
source_len = key_states.size(1)
|
||
|
|
||
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||
|
|
||
|
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
|
||
|
raise ValueError(
|
||
|
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
|
||
|
f" {attn_weights.size()}"
|
||
|
)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.size() != (batch_size, 1, target_len, source_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
|
||
|
f" {attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
|
||
|
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
|
||
|
if output_attentions:
|
||
|
# this operation is a bit awkward, but it's required to
|
||
|
# make sure that attn_weights keeps its gradient.
|
||
|
# In order to do so, attn_weights have to reshaped
|
||
|
# twice and have to be reused in the following
|
||
|
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
|
||
|
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
|
||
|
else:
|
||
|
attn_weights_reshaped = None
|
||
|
|
||
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||
|
|
||
|
attn_output = torch.bmm(attn_probs, value_states)
|
||
|
|
||
|
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
|
||
|
f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
|
||
|
attn_output = attn_output.transpose(1, 2)
|
||
|
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights_reshaped
|
||
|
|
||
|
|
||
|
class DetrEncoderLayer(nn.Module):
|
||
|
def __init__(self, config: DetrConfig):
|
||
|
super().__init__()
|
||
|
self.embed_dim = config.d_model
|
||
|
self.self_attn = DetrAttention(
|
||
|
embed_dim=self.embed_dim,
|
||
|
num_heads=config.encoder_attention_heads,
|
||
|
dropout=config.attention_dropout,
|
||
|
)
|
||
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
||
|
self.dropout = config.dropout
|
||
|
self.activation_fn = ACT2FN[config.activation_function]
|
||
|
self.activation_dropout = config.activation_dropout
|
||
|
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
||
|
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
||
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: torch.Tensor,
|
||
|
object_queries: torch.Tensor = None,
|
||
|
output_attentions: bool = False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
||
|
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
||
|
values.
|
||
|
object_queries (`torch.FloatTensor`, *optional*):
|
||
|
Object queries (also called content embeddings), to be added to the hidden states.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
position_embeddings = kwargs.pop("position_embeddings", None)
|
||
|
|
||
|
if kwargs:
|
||
|
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||
|
|
||
|
if position_embeddings is not None and object_queries is not None:
|
||
|
raise ValueError(
|
||
|
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||
|
)
|
||
|
|
||
|
if position_embeddings is not None:
|
||
|
logger.warning_once(
|
||
|
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||
|
)
|
||
|
object_queries = position_embeddings
|
||
|
|
||
|
residual = hidden_states
|
||
|
hidden_states, attn_weights = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
object_queries=object_queries,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
hidden_states = residual + hidden_states
|
||
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
||
|
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
||
|
|
||
|
hidden_states = self.fc2(hidden_states)
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
|
||
|
hidden_states = residual + hidden_states
|
||
|
hidden_states = self.final_layer_norm(hidden_states)
|
||
|
|
||
|
if self.training:
|
||
|
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
|
||
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
||
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class DetrDecoderLayer(nn.Module):
|
||
|
def __init__(self, config: DetrConfig):
|
||
|
super().__init__()
|
||
|
self.embed_dim = config.d_model
|
||
|
|
||
|
self.self_attn = DetrAttention(
|
||
|
embed_dim=self.embed_dim,
|
||
|
num_heads=config.decoder_attention_heads,
|
||
|
dropout=config.attention_dropout,
|
||
|
)
|
||
|
self.dropout = config.dropout
|
||
|
self.activation_fn = ACT2FN[config.activation_function]
|
||
|
self.activation_dropout = config.activation_dropout
|
||
|
|
||
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
||
|
self.encoder_attn = DetrAttention(
|
||
|
self.embed_dim,
|
||
|
config.decoder_attention_heads,
|
||
|
dropout=config.attention_dropout,
|
||
|
)
|
||
|
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
||
|
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
||
|
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
||
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
object_queries: Optional[torch.Tensor] = None,
|
||
|
query_position_embeddings: Optional[torch.Tensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
||
|
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
||
|
values.
|
||
|
object_queries (`torch.FloatTensor`, *optional*):
|
||
|
object_queries that are added to the hidden states
|
||
|
in the cross-attention layer.
|
||
|
query_position_embeddings (`torch.FloatTensor`, *optional*):
|
||
|
position embeddings that are added to the queries and keys
|
||
|
in the self-attention layer.
|
||
|
encoder_hidden_states (`torch.FloatTensor`):
|
||
|
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
||
|
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
||
|
values.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
position_embeddings = kwargs.pop("position_embeddings", None)
|
||
|
|
||
|
if kwargs:
|
||
|
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||
|
|
||
|
if position_embeddings is not None and object_queries is not None:
|
||
|
raise ValueError(
|
||
|
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||
|
)
|
||
|
|
||
|
if position_embeddings is not None:
|
||
|
logger.warning_once(
|
||
|
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||
|
)
|
||
|
object_queries = position_embeddings
|
||
|
|
||
|
residual = hidden_states
|
||
|
|
||
|
# Self Attention
|
||
|
hidden_states, self_attn_weights = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
object_queries=query_position_embeddings,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
hidden_states = residual + hidden_states
|
||
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
||
|
|
||
|
# Cross-Attention Block
|
||
|
cross_attn_weights = None
|
||
|
if encoder_hidden_states is not None:
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states, cross_attn_weights = self.encoder_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
object_queries=query_position_embeddings,
|
||
|
key_value_states=encoder_hidden_states,
|
||
|
attention_mask=encoder_attention_mask,
|
||
|
spatial_position_embeddings=object_queries,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
hidden_states = residual + hidden_states
|
||
|
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
||
|
|
||
|
# Fully Connected
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
||
|
hidden_states = self.fc2(hidden_states)
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
hidden_states = residual + hidden_states
|
||
|
hidden_states = self.final_layer_norm(hidden_states)
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights, cross_attn_weights)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class DetrClassificationHead(nn.Module):
|
||
|
"""Head for sentence-level classification tasks."""
|
||
|
|
||
|
def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(input_dim, inner_dim)
|
||
|
self.dropout = nn.Dropout(p=pooler_dropout)
|
||
|
self.out_proj = nn.Linear(inner_dim, num_classes)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor):
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = torch.tanh(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.out_proj(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class DetrPreTrainedModel(PreTrainedModel):
|
||
|
config_class = DetrConfig
|
||
|
base_model_prefix = "model"
|
||
|
main_input_name = "pixel_values"
|
||
|
_no_split_modules = [r"DetrConvEncoder", r"DetrEncoderLayer", r"DetrDecoderLayer"]
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
std = self.config.init_std
|
||
|
xavier_std = self.config.init_xavier_std
|
||
|
|
||
|
if isinstance(module, DetrMHAttentionMap):
|
||
|
nn.init.zeros_(module.k_linear.bias)
|
||
|
nn.init.zeros_(module.q_linear.bias)
|
||
|
nn.init.xavier_uniform_(module.k_linear.weight, gain=xavier_std)
|
||
|
nn.init.xavier_uniform_(module.q_linear.weight, gain=xavier_std)
|
||
|
elif isinstance(module, DetrLearnedPositionEmbedding):
|
||
|
nn.init.uniform_(module.row_embeddings.weight)
|
||
|
nn.init.uniform_(module.column_embeddings.weight)
|
||
|
if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
|
||
|
|
||
|
DETR_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`DetrConfig`]):
|
||
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||
|
load the weights associated with the model, only the configuration. Check out the
|
||
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
DETR_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Padding will be ignored by default should you provide it.
|
||
|
|
||
|
Pixel values can be obtained using [`AutoImageProcessor`]. See [`DetrImageProcessor.__call__`] for details.
|
||
|
|
||
|
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
||
|
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for pixels that are real (i.e. **not masked**),
|
||
|
- 0 for pixels that are padding (i.e. **masked**).
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
||
|
Not used by default. Can be used to mask object queries.
|
||
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
||
|
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
||
|
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
||
|
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
||
|
can choose to directly pass a flattened representation of an image.
|
||
|
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
||
|
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
||
|
embedded representation.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class DetrEncoder(DetrPreTrainedModel):
|
||
|
"""
|
||
|
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
||
|
[`DetrEncoderLayer`].
|
||
|
|
||
|
The encoder updates the flattened feature map through multiple self-attention layers.
|
||
|
|
||
|
Small tweak for DETR:
|
||
|
|
||
|
- object_queries are added to the forward pass.
|
||
|
|
||
|
Args:
|
||
|
config: DetrConfig
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: DetrConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.dropout = config.dropout
|
||
|
self.layerdrop = config.encoder_layerdrop
|
||
|
|
||
|
self.layers = nn.ModuleList([DetrEncoderLayer(config) for _ in range(config.encoder_layers)])
|
||
|
|
||
|
# in the original DETR, no layernorm is used at the end of the encoder, as "normalize_before" is set to False by default
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs_embeds=None,
|
||
|
attention_mask=None,
|
||
|
object_queries=None,
|
||
|
output_attentions=None,
|
||
|
output_hidden_states=None,
|
||
|
return_dict=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
r"""
|
||
|
Args:
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
|
||
|
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for pixel features that are real (i.e. **not masked**),
|
||
|
- 0 for pixel features that are padding (i.e. **masked**).
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Object queries that are added to the queries in each self-attention layer.
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||
|
for more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
position_embeddings = kwargs.pop("position_embeddings", None)
|
||
|
|
||
|
if kwargs:
|
||
|
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||
|
|
||
|
if position_embeddings is not None and object_queries is not None:
|
||
|
raise ValueError(
|
||
|
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||
|
)
|
||
|
|
||
|
if position_embeddings is not None:
|
||
|
logger.warning_once(
|
||
|
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||
|
)
|
||
|
object_queries = position_embeddings
|
||
|
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
|
||
|
# expand attention_mask
|
||
|
if attention_mask is not None:
|
||
|
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
|
||
|
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
||
|
|
||
|
encoder_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
for i, encoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||
|
to_drop = False
|
||
|
if self.training:
|
||
|
dropout_probability = torch.rand([])
|
||
|
if dropout_probability < self.layerdrop: # skip the layer
|
||
|
to_drop = True
|
||
|
|
||
|
if to_drop:
|
||
|
layer_outputs = (None, None)
|
||
|
else:
|
||
|
# we add object_queries as extra input to the encoder_layer
|
||
|
layer_outputs = encoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
object_queries=object_queries,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
class DetrDecoder(DetrPreTrainedModel):
|
||
|
"""
|
||
|
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DetrDecoderLayer`].
|
||
|
|
||
|
The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
|
||
|
|
||
|
Some small tweaks for DETR:
|
||
|
|
||
|
- object_queries and query_position_embeddings are added to the forward pass.
|
||
|
- if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers.
|
||
|
|
||
|
Args:
|
||
|
config: DetrConfig
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: DetrConfig):
|
||
|
super().__init__(config)
|
||
|
self.dropout = config.dropout
|
||
|
self.layerdrop = config.decoder_layerdrop
|
||
|
|
||
|
self.layers = nn.ModuleList([DetrDecoderLayer(config) for _ in range(config.decoder_layers)])
|
||
|
# in DETR, the decoder uses layernorm after the last decoder layer output
|
||
|
self.layernorm = nn.LayerNorm(config.d_model)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs_embeds=None,
|
||
|
attention_mask=None,
|
||
|
encoder_hidden_states=None,
|
||
|
encoder_attention_mask=None,
|
||
|
object_queries=None,
|
||
|
query_position_embeddings=None,
|
||
|
output_attentions=None,
|
||
|
output_hidden_states=None,
|
||
|
return_dict=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
r"""
|
||
|
Args:
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
The query embeddings that are passed into the decoder.
|
||
|
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for queries that are **not masked**,
|
||
|
- 0 for queries that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
||
|
of the decoder.
|
||
|
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
||
|
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
|
||
|
in `[0, 1]`:
|
||
|
|
||
|
- 1 for pixels that are real (i.e. **not masked**),
|
||
|
- 0 for pixels that are padding (i.e. **masked**).
|
||
|
|
||
|
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Object queries that are added to the queries and keys in each cross-attention layer.
|
||
|
query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
||
|
, *optional*): Position embeddings that are added to the values and keys in each self-attention layer.
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||
|
for more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
position_embeddings = kwargs.pop("position_embeddings", None)
|
||
|
|
||
|
if kwargs:
|
||
|
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||
|
|
||
|
if position_embeddings is not None and object_queries is not None:
|
||
|
raise ValueError(
|
||
|
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||
|
)
|
||
|
|
||
|
if position_embeddings is not None:
|
||
|
logger.warning_once(
|
||
|
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||
|
)
|
||
|
object_queries = position_embeddings
|
||
|
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if inputs_embeds is not None:
|
||
|
hidden_states = inputs_embeds
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
|
||
|
combined_attention_mask = None
|
||
|
|
||
|
if attention_mask is not None and combined_attention_mask is not None:
|
||
|
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
|
||
|
combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask(
|
||
|
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
||
|
)
|
||
|
|
||
|
# expand encoder attention mask
|
||
|
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
||
|
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
|
||
|
encoder_attention_mask = _prepare_4d_attention_mask(
|
||
|
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
||
|
)
|
||
|
|
||
|
# optional intermediate hidden states
|
||
|
intermediate = () if self.config.auxiliary_loss else None
|
||
|
|
||
|
# decoder layers
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attns = () if output_attentions else None
|
||
|
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
||
|
|
||
|
for idx, decoder_layer in enumerate(self.layers):
|
||
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
if self.training:
|
||
|
dropout_probability = torch.rand([])
|
||
|
if dropout_probability < self.layerdrop:
|
||
|
continue
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
decoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
combined_attention_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
None,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = decoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=combined_attention_mask,
|
||
|
object_queries=object_queries,
|
||
|
query_position_embeddings=query_position_embeddings,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if self.config.auxiliary_loss:
|
||
|
hidden_states = self.layernorm(hidden_states)
|
||
|
intermediate += (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attns += (layer_outputs[1],)
|
||
|
|
||
|
if encoder_hidden_states is not None:
|
||
|
all_cross_attentions += (layer_outputs[2],)
|
||
|
|
||
|
# finally, apply layernorm
|
||
|
hidden_states = self.layernorm(hidden_states)
|
||
|
|
||
|
# add hidden states from the last decoder layer
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
# stack intermediate decoder activations
|
||
|
if self.config.auxiliary_loss:
|
||
|
intermediate = torch.stack(intermediate)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate]
|
||
|
if v is not None
|
||
|
)
|
||
|
return DetrDecoderOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attns,
|
||
|
cross_attentions=all_cross_attentions,
|
||
|
intermediate_hidden_states=intermediate,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The bare DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states without
|
||
|
any specific head on top.
|
||
|
""",
|
||
|
DETR_START_DOCSTRING,
|
||
|
)
|
||
|
class DetrModel(DetrPreTrainedModel):
|
||
|
def __init__(self, config: DetrConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
# Create backbone + positional encoding
|
||
|
backbone = DetrConvEncoder(config)
|
||
|
object_queries = build_position_encoding(config)
|
||
|
self.backbone = DetrConvModel(backbone, object_queries)
|
||
|
|
||
|
# Create projection layer
|
||
|
self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1)
|
||
|
|
||
|
self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model)
|
||
|
|
||
|
self.encoder = DetrEncoder(config)
|
||
|
self.decoder = DetrDecoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_encoder(self):
|
||
|
return self.encoder
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.decoder
|
||
|
|
||
|
def freeze_backbone(self):
|
||
|
for name, param in self.backbone.conv_encoder.model.named_parameters():
|
||
|
param.requires_grad_(False)
|
||
|
|
||
|
def unfreeze_backbone(self):
|
||
|
for name, param in self.backbone.conv_encoder.model.named_parameters():
|
||
|
param.requires_grad_(True)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=DetrModelOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
pixel_mask: Optional[torch.LongTensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_outputs: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.FloatTensor], DetrModelOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoImageProcessor, DetrModel
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
||
|
>>> model = DetrModel.from_pretrained("facebook/detr-resnet-50")
|
||
|
|
||
|
>>> # prepare image for the model
|
||
|
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> # forward pass
|
||
|
>>> outputs = model(**inputs)
|
||
|
|
||
|
>>> # the last hidden states are the final query embeddings of the Transformer decoder
|
||
|
>>> # these are of shape (batch_size, num_queries, hidden_size)
|
||
|
>>> last_hidden_states = outputs.last_hidden_state
|
||
|
>>> list(last_hidden_states.shape)
|
||
|
[1, 100, 256]
|
||
|
```"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
device = pixel_values.device
|
||
|
|
||
|
if pixel_mask is None:
|
||
|
pixel_mask = torch.ones(((batch_size, height, width)), device=device)
|
||
|
|
||
|
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
|
||
|
# pixel_values should be of shape (batch_size, num_channels, height, width)
|
||
|
# pixel_mask should be of shape (batch_size, height, width)
|
||
|
features, object_queries_list = self.backbone(pixel_values, pixel_mask)
|
||
|
|
||
|
# get final feature map and downsampled mask
|
||
|
feature_map, mask = features[-1]
|
||
|
|
||
|
if mask is None:
|
||
|
raise ValueError("Backbone does not return downsampled pixel mask")
|
||
|
|
||
|
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
|
||
|
projected_feature_map = self.input_projection(feature_map)
|
||
|
|
||
|
# Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
|
||
|
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
|
||
|
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
|
||
|
object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1)
|
||
|
|
||
|
flattened_mask = mask.flatten(1)
|
||
|
|
||
|
# Fourth, sent flattened_features + flattened_mask + position embeddings through encoder
|
||
|
# flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
|
||
|
# flattened_mask is a Tensor of shape (batch_size, heigth*width)
|
||
|
if encoder_outputs is None:
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds=flattened_features,
|
||
|
attention_mask=flattened_mask,
|
||
|
object_queries=object_queries,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
||
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
||
|
encoder_outputs = BaseModelOutput(
|
||
|
last_hidden_state=encoder_outputs[0],
|
||
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
||
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
||
|
)
|
||
|
|
||
|
# Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output)
|
||
|
query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1)
|
||
|
queries = torch.zeros_like(query_position_embeddings)
|
||
|
|
||
|
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
|
||
|
decoder_outputs = self.decoder(
|
||
|
inputs_embeds=queries,
|
||
|
attention_mask=None,
|
||
|
object_queries=object_queries,
|
||
|
query_position_embeddings=query_position_embeddings,
|
||
|
encoder_hidden_states=encoder_outputs[0],
|
||
|
encoder_attention_mask=flattened_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
return decoder_outputs + encoder_outputs
|
||
|
|
||
|
return DetrModelOutput(
|
||
|
last_hidden_state=decoder_outputs.last_hidden_state,
|
||
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
||
|
decoder_attentions=decoder_outputs.attentions,
|
||
|
cross_attentions=decoder_outputs.cross_attentions,
|
||
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
||
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
||
|
encoder_attentions=encoder_outputs.attentions,
|
||
|
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks
|
||
|
such as COCO detection.
|
||
|
""",
|
||
|
DETR_START_DOCSTRING,
|
||
|
)
|
||
|
class DetrForObjectDetection(DetrPreTrainedModel):
|
||
|
def __init__(self, config: DetrConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
# DETR encoder-decoder model
|
||
|
self.model = DetrModel(config)
|
||
|
|
||
|
# Object detection heads
|
||
|
self.class_labels_classifier = nn.Linear(
|
||
|
config.d_model, config.num_labels + 1
|
||
|
) # We add one for the "no object" class
|
||
|
self.bbox_predictor = DetrMLPPredictionHead(
|
||
|
input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
|
||
|
)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
||
|
@torch.jit.unused
|
||
|
def _set_aux_loss(self, outputs_class, outputs_coord):
|
||
|
# this is a workaround to make torchscript happy, as torchscript
|
||
|
# doesn't support dictionary with non-homogeneous values, such
|
||
|
# as a dict having both a Tensor and a list.
|
||
|
return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=DetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
pixel_mask: Optional[torch.LongTensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_outputs: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[List[dict]] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.FloatTensor], DetrObjectDetectionOutput]:
|
||
|
r"""
|
||
|
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
|
||
|
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
|
||
|
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
|
||
|
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
|
||
|
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoImageProcessor, DetrForObjectDetection
|
||
|
>>> import torch
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
||
|
>>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
||
|
|
||
|
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
|
||
|
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
|
||
|
>>> target_sizes = torch.tensor([image.size[::-1]])
|
||
|
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
|
||
|
... 0
|
||
|
... ]
|
||
|
|
||
|
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
||
|
... box = [round(i, 2) for i in box.tolist()]
|
||
|
... print(
|
||
|
... f"Detected {model.config.id2label[label.item()]} with confidence "
|
||
|
... f"{round(score.item(), 3)} at location {box}"
|
||
|
... )
|
||
|
Detected remote with confidence 0.998 at location [40.16, 70.81, 175.55, 117.98]
|
||
|
Detected remote with confidence 0.996 at location [333.24, 72.55, 368.33, 187.66]
|
||
|
Detected couch with confidence 0.995 at location [-0.02, 1.15, 639.73, 473.76]
|
||
|
Detected cat with confidence 0.999 at location [13.24, 52.05, 314.02, 470.93]
|
||
|
Detected cat with confidence 0.999 at location [345.4, 23.85, 640.37, 368.72]
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# First, sent images through DETR base model to obtain encoder + decoder outputs
|
||
|
outputs = self.model(
|
||
|
pixel_values,
|
||
|
pixel_mask=pixel_mask,
|
||
|
decoder_attention_mask=decoder_attention_mask,
|
||
|
encoder_outputs=encoder_outputs,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
decoder_inputs_embeds=decoder_inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
# class logits + predicted bounding boxes
|
||
|
logits = self.class_labels_classifier(sequence_output)
|
||
|
pred_boxes = self.bbox_predictor(sequence_output).sigmoid()
|
||
|
|
||
|
loss, loss_dict, auxiliary_outputs = None, None, None
|
||
|
if labels is not None:
|
||
|
# First: create the matcher
|
||
|
matcher = DetrHungarianMatcher(
|
||
|
class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
|
||
|
)
|
||
|
# Second: create the criterion
|
||
|
losses = ["labels", "boxes", "cardinality"]
|
||
|
criterion = DetrLoss(
|
||
|
matcher=matcher,
|
||
|
num_classes=self.config.num_labels,
|
||
|
eos_coef=self.config.eos_coefficient,
|
||
|
losses=losses,
|
||
|
)
|
||
|
criterion.to(self.device)
|
||
|
# Third: compute the losses, based on outputs and labels
|
||
|
outputs_loss = {}
|
||
|
outputs_loss["logits"] = logits
|
||
|
outputs_loss["pred_boxes"] = pred_boxes
|
||
|
if self.config.auxiliary_loss:
|
||
|
intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4]
|
||
|
outputs_class = self.class_labels_classifier(intermediate)
|
||
|
outputs_coord = self.bbox_predictor(intermediate).sigmoid()
|
||
|
auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord)
|
||
|
outputs_loss["auxiliary_outputs"] = auxiliary_outputs
|
||
|
|
||
|
loss_dict = criterion(outputs_loss, labels)
|
||
|
# Fourth: compute total loss, as a weighted sum of the various losses
|
||
|
weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
|
||
|
weight_dict["loss_giou"] = self.config.giou_loss_coefficient
|
||
|
if self.config.auxiliary_loss:
|
||
|
aux_weight_dict = {}
|
||
|
for i in range(self.config.decoder_layers - 1):
|
||
|
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
|
||
|
weight_dict.update(aux_weight_dict)
|
||
|
loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
|
||
|
|
||
|
if not return_dict:
|
||
|
if auxiliary_outputs is not None:
|
||
|
output = (logits, pred_boxes) + auxiliary_outputs + outputs
|
||
|
else:
|
||
|
output = (logits, pred_boxes) + outputs
|
||
|
return ((loss, loss_dict) + output) if loss is not None else output
|
||
|
|
||
|
return DetrObjectDetectionOutput(
|
||
|
loss=loss,
|
||
|
loss_dict=loss_dict,
|
||
|
logits=logits,
|
||
|
pred_boxes=pred_boxes,
|
||
|
auxiliary_outputs=auxiliary_outputs,
|
||
|
last_hidden_state=outputs.last_hidden_state,
|
||
|
decoder_hidden_states=outputs.decoder_hidden_states,
|
||
|
decoder_attentions=outputs.decoder_attentions,
|
||
|
cross_attentions=outputs.cross_attentions,
|
||
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
||
|
encoder_hidden_states=outputs.encoder_hidden_states,
|
||
|
encoder_attentions=outputs.encoder_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
DETR Model (consisting of a backbone and encoder-decoder Transformer) with a segmentation head on top, for tasks
|
||
|
such as COCO panoptic.
|
||
|
|
||
|
""",
|
||
|
DETR_START_DOCSTRING,
|
||
|
)
|
||
|
class DetrForSegmentation(DetrPreTrainedModel):
|
||
|
def __init__(self, config: DetrConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
# object detection model
|
||
|
self.detr = DetrForObjectDetection(config)
|
||
|
|
||
|
# segmentation head
|
||
|
hidden_size, number_of_heads = config.d_model, config.encoder_attention_heads
|
||
|
intermediate_channel_sizes = self.detr.model.backbone.conv_encoder.intermediate_channel_sizes
|
||
|
|
||
|
self.mask_head = DetrMaskHeadSmallConv(
|
||
|
hidden_size + number_of_heads, intermediate_channel_sizes[::-1][-3:], hidden_size
|
||
|
)
|
||
|
|
||
|
self.bbox_attention = DetrMHAttentionMap(
|
||
|
hidden_size, hidden_size, number_of_heads, dropout=0.0, std=config.init_xavier_std
|
||
|
)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=DetrSegmentationOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
pixel_mask: Optional[torch.LongTensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_outputs: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[List[dict]] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.FloatTensor], DetrSegmentationOutput]:
|
||
|
r"""
|
||
|
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
|
||
|
Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each
|
||
|
dictionary containing at least the following 3 keys: 'class_labels', 'boxes' and 'masks' (the class labels,
|
||
|
bounding boxes and segmentation masks of an image in the batch respectively). The class labels themselves
|
||
|
should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)`, the boxes a
|
||
|
`torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)` and the masks a
|
||
|
`torch.FloatTensor` of shape `(number of bounding boxes in the image, height, width)`.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> import io
|
||
|
>>> import requests
|
||
|
>>> from PIL import Image
|
||
|
>>> import torch
|
||
|
>>> import numpy
|
||
|
|
||
|
>>> from transformers import AutoImageProcessor, DetrForSegmentation
|
||
|
>>> from transformers.image_transforms import rgb_to_id
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic")
|
||
|
>>> model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
|
||
|
|
||
|
>>> # prepare image for the model
|
||
|
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> # forward pass
|
||
|
>>> outputs = model(**inputs)
|
||
|
|
||
|
>>> # Use the `post_process_panoptic_segmentation` method of the `image_processor` to retrieve post-processed panoptic segmentation maps
|
||
|
>>> # Segmentation results are returned as a list of dictionaries
|
||
|
>>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(300, 500)])
|
||
|
|
||
|
>>> # A tensor of shape (height, width) where each value denotes a segment id, filled with -1 if no segment is found
|
||
|
>>> panoptic_seg = result[0]["segmentation"]
|
||
|
>>> # Get prediction score and segment_id to class_id mapping of each segment
|
||
|
>>> panoptic_segments_info = result[0]["segments_info"]
|
||
|
```"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
device = pixel_values.device
|
||
|
|
||
|
if pixel_mask is None:
|
||
|
pixel_mask = torch.ones((batch_size, height, width), device=device)
|
||
|
|
||
|
# First, get list of feature maps and position embeddings
|
||
|
features, object_queries_list = self.detr.model.backbone(pixel_values, pixel_mask=pixel_mask)
|
||
|
|
||
|
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
|
||
|
feature_map, mask = features[-1]
|
||
|
batch_size, num_channels, height, width = feature_map.shape
|
||
|
projected_feature_map = self.detr.model.input_projection(feature_map)
|
||
|
|
||
|
# Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
|
||
|
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
|
||
|
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
|
||
|
object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1)
|
||
|
|
||
|
flattened_mask = mask.flatten(1)
|
||
|
|
||
|
# Fourth, sent flattened_features + flattened_mask + position embeddings through encoder
|
||
|
# flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
|
||
|
# flattened_mask is a Tensor of shape (batch_size, heigth*width)
|
||
|
if encoder_outputs is None:
|
||
|
encoder_outputs = self.detr.model.encoder(
|
||
|
inputs_embeds=flattened_features,
|
||
|
attention_mask=flattened_mask,
|
||
|
object_queries=object_queries,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
||
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
||
|
encoder_outputs = BaseModelOutput(
|
||
|
last_hidden_state=encoder_outputs[0],
|
||
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
||
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
||
|
)
|
||
|
|
||
|
# Fifth, sent query embeddings + position embeddings through the decoder (which is conditioned on the encoder output)
|
||
|
query_position_embeddings = self.detr.model.query_position_embeddings.weight.unsqueeze(0).repeat(
|
||
|
batch_size, 1, 1
|
||
|
)
|
||
|
queries = torch.zeros_like(query_position_embeddings)
|
||
|
|
||
|
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
|
||
|
decoder_outputs = self.detr.model.decoder(
|
||
|
inputs_embeds=queries,
|
||
|
attention_mask=None,
|
||
|
object_queries=object_queries,
|
||
|
query_position_embeddings=query_position_embeddings,
|
||
|
encoder_hidden_states=encoder_outputs[0],
|
||
|
encoder_attention_mask=flattened_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = decoder_outputs[0]
|
||
|
|
||
|
# Sixth, compute logits, pred_boxes and pred_masks
|
||
|
logits = self.detr.class_labels_classifier(sequence_output)
|
||
|
pred_boxes = self.detr.bbox_predictor(sequence_output).sigmoid()
|
||
|
|
||
|
memory = encoder_outputs[0].permute(0, 2, 1).view(batch_size, self.config.d_model, height, width)
|
||
|
mask = flattened_mask.view(batch_size, height, width)
|
||
|
|
||
|
# FIXME h_boxes takes the last one computed, keep this in mind
|
||
|
# important: we need to reverse the mask, since in the original implementation the mask works reversed
|
||
|
# bbox_mask is of shape (batch_size, num_queries, number_of_attention_heads in bbox_attention, height/32, width/32)
|
||
|
bbox_mask = self.bbox_attention(sequence_output, memory, mask=~mask)
|
||
|
|
||
|
seg_masks = self.mask_head(projected_feature_map, bbox_mask, [features[2][0], features[1][0], features[0][0]])
|
||
|
|
||
|
pred_masks = seg_masks.view(batch_size, self.detr.config.num_queries, seg_masks.shape[-2], seg_masks.shape[-1])
|
||
|
|
||
|
loss, loss_dict, auxiliary_outputs = None, None, None
|
||
|
if labels is not None:
|
||
|
# First: create the matcher
|
||
|
matcher = DetrHungarianMatcher(
|
||
|
class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
|
||
|
)
|
||
|
# Second: create the criterion
|
||
|
losses = ["labels", "boxes", "cardinality", "masks"]
|
||
|
criterion = DetrLoss(
|
||
|
matcher=matcher,
|
||
|
num_classes=self.config.num_labels,
|
||
|
eos_coef=self.config.eos_coefficient,
|
||
|
losses=losses,
|
||
|
)
|
||
|
criterion.to(self.device)
|
||
|
# Third: compute the losses, based on outputs and labels
|
||
|
outputs_loss = {}
|
||
|
outputs_loss["logits"] = logits
|
||
|
outputs_loss["pred_boxes"] = pred_boxes
|
||
|
outputs_loss["pred_masks"] = pred_masks
|
||
|
if self.config.auxiliary_loss:
|
||
|
intermediate = decoder_outputs.intermediate_hidden_states if return_dict else decoder_outputs[-1]
|
||
|
outputs_class = self.detr.class_labels_classifier(intermediate)
|
||
|
outputs_coord = self.detr.bbox_predictor(intermediate).sigmoid()
|
||
|
auxiliary_outputs = self.detr._set_aux_loss(outputs_class, outputs_coord)
|
||
|
outputs_loss["auxiliary_outputs"] = auxiliary_outputs
|
||
|
|
||
|
loss_dict = criterion(outputs_loss, labels)
|
||
|
# Fourth: compute total loss, as a weighted sum of the various losses
|
||
|
weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
|
||
|
weight_dict["loss_giou"] = self.config.giou_loss_coefficient
|
||
|
weight_dict["loss_mask"] = self.config.mask_loss_coefficient
|
||
|
weight_dict["loss_dice"] = self.config.dice_loss_coefficient
|
||
|
if self.config.auxiliary_loss:
|
||
|
aux_weight_dict = {}
|
||
|
for i in range(self.config.decoder_layers - 1):
|
||
|
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
|
||
|
weight_dict.update(aux_weight_dict)
|
||
|
loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
|
||
|
|
||
|
if not return_dict:
|
||
|
if auxiliary_outputs is not None:
|
||
|
output = (logits, pred_boxes, pred_masks) + auxiliary_outputs + decoder_outputs + encoder_outputs
|
||
|
else:
|
||
|
output = (logits, pred_boxes, pred_masks) + decoder_outputs + encoder_outputs
|
||
|
return ((loss, loss_dict) + output) if loss is not None else output
|
||
|
|
||
|
return DetrSegmentationOutput(
|
||
|
loss=loss,
|
||
|
loss_dict=loss_dict,
|
||
|
logits=logits,
|
||
|
pred_boxes=pred_boxes,
|
||
|
pred_masks=pred_masks,
|
||
|
auxiliary_outputs=auxiliary_outputs,
|
||
|
last_hidden_state=decoder_outputs.last_hidden_state,
|
||
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
||
|
decoder_attentions=decoder_outputs.attentions,
|
||
|
cross_attentions=decoder_outputs.cross_attentions,
|
||
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
||
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
||
|
encoder_attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
def _expand(tensor, length: int):
|
||
|
return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1)
|
||
|
|
||
|
|
||
|
# taken from https://github.com/facebookresearch/detr/blob/master/models/segmentation.py
|
||
|
class DetrMaskHeadSmallConv(nn.Module):
|
||
|
"""
|
||
|
Simple convolutional head, using group norm. Upsampling is done using a FPN approach
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dim, fpn_dims, context_dim):
|
||
|
super().__init__()
|
||
|
|
||
|
if dim % 8 != 0:
|
||
|
raise ValueError(
|
||
|
"The hidden_size + number of attention heads must be divisible by 8 as the number of groups in"
|
||
|
" GroupNorm is set to 8"
|
||
|
)
|
||
|
|
||
|
inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64]
|
||
|
|
||
|
self.lay1 = nn.Conv2d(dim, dim, 3, padding=1)
|
||
|
self.gn1 = nn.GroupNorm(8, dim)
|
||
|
self.lay2 = nn.Conv2d(dim, inter_dims[1], 3, padding=1)
|
||
|
self.gn2 = nn.GroupNorm(min(8, inter_dims[1]), inter_dims[1])
|
||
|
self.lay3 = nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1)
|
||
|
self.gn3 = nn.GroupNorm(min(8, inter_dims[2]), inter_dims[2])
|
||
|
self.lay4 = nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1)
|
||
|
self.gn4 = nn.GroupNorm(min(8, inter_dims[3]), inter_dims[3])
|
||
|
self.lay5 = nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1)
|
||
|
self.gn5 = nn.GroupNorm(min(8, inter_dims[4]), inter_dims[4])
|
||
|
self.out_lay = nn.Conv2d(inter_dims[4], 1, 3, padding=1)
|
||
|
|
||
|
self.dim = dim
|
||
|
|
||
|
self.adapter1 = nn.Conv2d(fpn_dims[0], inter_dims[1], 1)
|
||
|
self.adapter2 = nn.Conv2d(fpn_dims[1], inter_dims[2], 1)
|
||
|
self.adapter3 = nn.Conv2d(fpn_dims[2], inter_dims[3], 1)
|
||
|
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
nn.init.kaiming_uniform_(m.weight, a=1)
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
|
||
|
def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]):
|
||
|
# here we concatenate x, the projected feature map, of shape (batch_size, d_model, heigth/32, width/32) with
|
||
|
# the bbox_mask = the attention maps of shape (batch_size, n_queries, n_heads, height/32, width/32).
|
||
|
# We expand the projected feature map to match the number of heads.
|
||
|
x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)
|
||
|
|
||
|
x = self.lay1(x)
|
||
|
x = self.gn1(x)
|
||
|
x = nn.functional.relu(x)
|
||
|
x = self.lay2(x)
|
||
|
x = self.gn2(x)
|
||
|
x = nn.functional.relu(x)
|
||
|
|
||
|
cur_fpn = self.adapter1(fpns[0])
|
||
|
if cur_fpn.size(0) != x.size(0):
|
||
|
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
|
||
|
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
|
||
|
x = self.lay3(x)
|
||
|
x = self.gn3(x)
|
||
|
x = nn.functional.relu(x)
|
||
|
|
||
|
cur_fpn = self.adapter2(fpns[1])
|
||
|
if cur_fpn.size(0) != x.size(0):
|
||
|
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
|
||
|
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
|
||
|
x = self.lay4(x)
|
||
|
x = self.gn4(x)
|
||
|
x = nn.functional.relu(x)
|
||
|
|
||
|
cur_fpn = self.adapter3(fpns[2])
|
||
|
if cur_fpn.size(0) != x.size(0):
|
||
|
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
|
||
|
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
|
||
|
x = self.lay5(x)
|
||
|
x = self.gn5(x)
|
||
|
x = nn.functional.relu(x)
|
||
|
|
||
|
x = self.out_lay(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class DetrMHAttentionMap(nn.Module):
|
||
|
"""This is a 2D attention module, which only returns the attention softmax (no multiplication by value)"""
|
||
|
|
||
|
def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True, std=None):
|
||
|
super().__init__()
|
||
|
self.num_heads = num_heads
|
||
|
self.hidden_dim = hidden_dim
|
||
|
self.dropout = nn.Dropout(dropout)
|
||
|
|
||
|
self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
|
||
|
self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
|
||
|
|
||
|
self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5
|
||
|
|
||
|
def forward(self, q, k, mask: Optional[Tensor] = None):
|
||
|
q = self.q_linear(q)
|
||
|
k = nn.functional.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias)
|
||
|
queries_per_head = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads)
|
||
|
keys_per_head = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1])
|
||
|
weights = torch.einsum("bqnc,bnchw->bqnhw", queries_per_head * self.normalize_fact, keys_per_head)
|
||
|
|
||
|
if mask is not None:
|
||
|
weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), torch.finfo(weights.dtype).min)
|
||
|
weights = nn.functional.softmax(weights.flatten(2), dim=-1).view(weights.size())
|
||
|
weights = self.dropout(weights)
|
||
|
return weights
|
||
|
|
||
|
|
||
|
def dice_loss(inputs, targets, num_boxes):
|
||
|
"""
|
||
|
Compute the DICE loss, similar to generalized IOU for masks
|
||
|
|
||
|
Args:
|
||
|
inputs: A float tensor of arbitrary shape.
|
||
|
The predictions for each example.
|
||
|
targets: A float tensor with the same shape as inputs. Stores the binary
|
||
|
classification label for each element in inputs (0 for the negative class and 1 for the positive
|
||
|
class).
|
||
|
"""
|
||
|
inputs = inputs.sigmoid()
|
||
|
inputs = inputs.flatten(1)
|
||
|
numerator = 2 * (inputs * targets).sum(1)
|
||
|
denominator = inputs.sum(-1) + targets.sum(-1)
|
||
|
loss = 1 - (numerator + 1) / (denominator + 1)
|
||
|
return loss.sum() / num_boxes
|
||
|
|
||
|
|
||
|
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
|
||
|
"""
|
||
|
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
|
||
|
|
||
|
Args:
|
||
|
inputs (`torch.FloatTensor` of arbitrary shape):
|
||
|
The predictions for each example.
|
||
|
targets (`torch.FloatTensor` with the same shape as `inputs`)
|
||
|
A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class
|
||
|
and 1 for the positive class).
|
||
|
alpha (`float`, *optional*, defaults to `0.25`):
|
||
|
Optional weighting factor in the range (0,1) to balance positive vs. negative examples.
|
||
|
gamma (`int`, *optional*, defaults to `2`):
|
||
|
Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples.
|
||
|
|
||
|
Returns:
|
||
|
Loss tensor
|
||
|
"""
|
||
|
prob = inputs.sigmoid()
|
||
|
ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
||
|
# add modulating factor
|
||
|
p_t = prob * targets + (1 - prob) * (1 - targets)
|
||
|
loss = ce_loss * ((1 - p_t) ** gamma)
|
||
|
|
||
|
if alpha >= 0:
|
||
|
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
|
||
|
loss = alpha_t * loss
|
||
|
|
||
|
return loss.mean(1).sum() / num_boxes
|
||
|
|
||
|
|
||
|
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
||
|
class DetrLoss(nn.Module):
|
||
|
"""
|
||
|
This class computes the losses for DetrForObjectDetection/DetrForSegmentation. The process happens in two steps: 1)
|
||
|
we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair
|
||
|
of matched ground-truth / prediction (supervise class and box).
|
||
|
|
||
|
A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes`
|
||
|
parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is
|
||
|
the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to
|
||
|
be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2
|
||
|
(`max_obj_id` + 1). For more details on this, check the following discussion
|
||
|
https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223"
|
||
|
|
||
|
|
||
|
Args:
|
||
|
matcher (`DetrHungarianMatcher`):
|
||
|
Module able to compute a matching between targets and proposals.
|
||
|
num_classes (`int`):
|
||
|
Number of object categories, omitting the special no-object category.
|
||
|
eos_coef (`float`):
|
||
|
Relative classification weight applied to the no-object category.
|
||
|
losses (`List[str]`):
|
||
|
List of all the losses to be applied. See `get_loss` for a list of all available losses.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, matcher, num_classes, eos_coef, losses):
|
||
|
super().__init__()
|
||
|
self.matcher = matcher
|
||
|
self.num_classes = num_classes
|
||
|
self.eos_coef = eos_coef
|
||
|
self.losses = losses
|
||
|
empty_weight = torch.ones(self.num_classes + 1)
|
||
|
empty_weight[-1] = self.eos_coef
|
||
|
self.register_buffer("empty_weight", empty_weight)
|
||
|
|
||
|
# removed logging parameter, which was part of the original implementation
|
||
|
def loss_labels(self, outputs, targets, indices, num_boxes):
|
||
|
"""
|
||
|
Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim
|
||
|
[nb_target_boxes]
|
||
|
"""
|
||
|
if "logits" not in outputs:
|
||
|
raise KeyError("No logits were found in the outputs")
|
||
|
source_logits = outputs["logits"]
|
||
|
|
||
|
idx = self._get_source_permutation_idx(indices)
|
||
|
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
|
||
|
target_classes = torch.full(
|
||
|
source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
|
||
|
)
|
||
|
target_classes[idx] = target_classes_o
|
||
|
|
||
|
loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight)
|
||
|
losses = {"loss_ce": loss_ce}
|
||
|
|
||
|
return losses
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def loss_cardinality(self, outputs, targets, indices, num_boxes):
|
||
|
"""
|
||
|
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.
|
||
|
|
||
|
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
|
||
|
"""
|
||
|
logits = outputs["logits"]
|
||
|
device = logits.device
|
||
|
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
|
||
|
# Count the number of predictions that are NOT "no-object" (which is the last class)
|
||
|
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
|
||
|
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
|
||
|
losses = {"cardinality_error": card_err}
|
||
|
return losses
|
||
|
|
||
|
def loss_boxes(self, outputs, targets, indices, num_boxes):
|
||
|
"""
|
||
|
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.
|
||
|
|
||
|
Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
|
||
|
are expected in format (center_x, center_y, w, h), normalized by the image size.
|
||
|
"""
|
||
|
if "pred_boxes" not in outputs:
|
||
|
raise KeyError("No predicted boxes found in outputs")
|
||
|
idx = self._get_source_permutation_idx(indices)
|
||
|
source_boxes = outputs["pred_boxes"][idx]
|
||
|
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
|
||
|
|
||
|
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
|
||
|
|
||
|
losses = {}
|
||
|
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
|
||
|
|
||
|
loss_giou = 1 - torch.diag(
|
||
|
generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
|
||
|
)
|
||
|
losses["loss_giou"] = loss_giou.sum() / num_boxes
|
||
|
return losses
|
||
|
|
||
|
def loss_masks(self, outputs, targets, indices, num_boxes):
|
||
|
"""
|
||
|
Compute the losses related to the masks: the focal loss and the dice loss.
|
||
|
|
||
|
Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w].
|
||
|
"""
|
||
|
if "pred_masks" not in outputs:
|
||
|
raise KeyError("No predicted masks found in outputs")
|
||
|
|
||
|
source_idx = self._get_source_permutation_idx(indices)
|
||
|
target_idx = self._get_target_permutation_idx(indices)
|
||
|
source_masks = outputs["pred_masks"]
|
||
|
source_masks = source_masks[source_idx]
|
||
|
masks = [t["masks"] for t in targets]
|
||
|
# TODO use valid to mask invalid areas due to padding in loss
|
||
|
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
|
||
|
target_masks = target_masks.to(source_masks)
|
||
|
target_masks = target_masks[target_idx]
|
||
|
|
||
|
# upsample predictions to the target size
|
||
|
source_masks = nn.functional.interpolate(
|
||
|
source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
|
||
|
)
|
||
|
source_masks = source_masks[:, 0].flatten(1)
|
||
|
|
||
|
target_masks = target_masks.flatten(1)
|
||
|
target_masks = target_masks.view(source_masks.shape)
|
||
|
losses = {
|
||
|
"loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes),
|
||
|
"loss_dice": dice_loss(source_masks, target_masks, num_boxes),
|
||
|
}
|
||
|
return losses
|
||
|
|
||
|
def _get_source_permutation_idx(self, indices):
|
||
|
# permute predictions following indices
|
||
|
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
|
||
|
source_idx = torch.cat([source for (source, _) in indices])
|
||
|
return batch_idx, source_idx
|
||
|
|
||
|
def _get_target_permutation_idx(self, indices):
|
||
|
# permute targets following indices
|
||
|
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
|
||
|
target_idx = torch.cat([target for (_, target) in indices])
|
||
|
return batch_idx, target_idx
|
||
|
|
||
|
def get_loss(self, loss, outputs, targets, indices, num_boxes):
|
||
|
loss_map = {
|
||
|
"labels": self.loss_labels,
|
||
|
"cardinality": self.loss_cardinality,
|
||
|
"boxes": self.loss_boxes,
|
||
|
"masks": self.loss_masks,
|
||
|
}
|
||
|
if loss not in loss_map:
|
||
|
raise ValueError(f"Loss {loss} not supported")
|
||
|
return loss_map[loss](outputs, targets, indices, num_boxes)
|
||
|
|
||
|
def forward(self, outputs, targets):
|
||
|
"""
|
||
|
This performs the loss computation.
|
||
|
|
||
|
Args:
|
||
|
outputs (`dict`, *optional*):
|
||
|
Dictionary of tensors, see the output specification of the model for the format.
|
||
|
targets (`List[dict]`, *optional*):
|
||
|
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
|
||
|
losses applied, see each loss' doc.
|
||
|
"""
|
||
|
outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"}
|
||
|
|
||
|
# Retrieve the matching between the outputs of the last layer and the targets
|
||
|
indices = self.matcher(outputs_without_aux, targets)
|
||
|
|
||
|
# Compute the average number of target boxes across all nodes, for normalization purposes
|
||
|
num_boxes = sum(len(t["class_labels"]) for t in targets)
|
||
|
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
|
||
|
world_size = 1
|
||
|
if is_accelerate_available():
|
||
|
if PartialState._shared_state != {}:
|
||
|
num_boxes = reduce(num_boxes)
|
||
|
world_size = PartialState().num_processes
|
||
|
num_boxes = torch.clamp(num_boxes / world_size, min=1).item()
|
||
|
|
||
|
# Compute all the requested losses
|
||
|
losses = {}
|
||
|
for loss in self.losses:
|
||
|
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
|
||
|
|
||
|
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
||
|
if "auxiliary_outputs" in outputs:
|
||
|
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
|
||
|
indices = self.matcher(auxiliary_outputs, targets)
|
||
|
for loss in self.losses:
|
||
|
if loss == "masks":
|
||
|
# Intermediate masks losses are too costly to compute, we ignore them.
|
||
|
continue
|
||
|
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
|
||
|
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
|
||
|
losses.update(l_dict)
|
||
|
|
||
|
return losses
|
||
|
|
||
|
|
||
|
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
||
|
class DetrMLPPredictionHead(nn.Module):
|
||
|
"""
|
||
|
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
|
||
|
height and width of a bounding box w.r.t. an image.
|
||
|
|
||
|
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
||
|
super().__init__()
|
||
|
self.num_layers = num_layers
|
||
|
h = [hidden_dim] * (num_layers - 1)
|
||
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||
|
|
||
|
def forward(self, x):
|
||
|
for i, layer in enumerate(self.layers):
|
||
|
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
# taken from https://github.com/facebookresearch/detr/blob/master/models/matcher.py
|
||
|
class DetrHungarianMatcher(nn.Module):
|
||
|
"""
|
||
|
This class computes an assignment between the targets and the predictions of the network.
|
||
|
|
||
|
For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
|
||
|
predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
|
||
|
un-matched (and thus treated as non-objects).
|
||
|
|
||
|
Args:
|
||
|
class_cost:
|
||
|
The relative weight of the classification error in the matching cost.
|
||
|
bbox_cost:
|
||
|
The relative weight of the L1 error of the bounding box coordinates in the matching cost.
|
||
|
giou_cost:
|
||
|
The relative weight of the giou loss of the bounding box in the matching cost.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
|
||
|
super().__init__()
|
||
|
requires_backends(self, ["scipy"])
|
||
|
|
||
|
self.class_cost = class_cost
|
||
|
self.bbox_cost = bbox_cost
|
||
|
self.giou_cost = giou_cost
|
||
|
if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
|
||
|
raise ValueError("All costs of the Matcher can't be 0")
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def forward(self, outputs, targets):
|
||
|
"""
|
||
|
Args:
|
||
|
outputs (`dict`):
|
||
|
A dictionary that contains at least these entries:
|
||
|
* "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
|
||
|
* "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
|
||
|
targets (`List[dict]`):
|
||
|
A list of targets (len(targets) = batch_size), where each target is a dict containing:
|
||
|
* "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
|
||
|
ground-truth
|
||
|
objects in the target) containing the class labels
|
||
|
* "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.
|
||
|
|
||
|
Returns:
|
||
|
`List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
|
||
|
- index_i is the indices of the selected predictions (in order)
|
||
|
- index_j is the indices of the corresponding selected targets (in order)
|
||
|
For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
|
||
|
"""
|
||
|
batch_size, num_queries = outputs["logits"].shape[:2]
|
||
|
|
||
|
# We flatten to compute the cost matrices in a batch
|
||
|
out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
|
||
|
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
|
||
|
|
||
|
# Also concat the target labels and boxes
|
||
|
target_ids = torch.cat([v["class_labels"] for v in targets])
|
||
|
target_bbox = torch.cat([v["boxes"] for v in targets])
|
||
|
|
||
|
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
|
||
|
# but approximate it in 1 - proba[target class].
|
||
|
# The 1 is a constant that doesn't change the matching, it can be ommitted.
|
||
|
class_cost = -out_prob[:, target_ids]
|
||
|
|
||
|
# Compute the L1 cost between boxes
|
||
|
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
|
||
|
|
||
|
# Compute the giou cost between boxes
|
||
|
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
|
||
|
|
||
|
# Final cost matrix
|
||
|
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
|
||
|
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
|
||
|
|
||
|
sizes = [len(v["boxes"]) for v in targets]
|
||
|
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
|
||
|
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
|
||
|
|
||
|
|
||
|
# below: bounding box utilities taken from https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
|
||
|
|
||
|
|
||
|
def _upcast(t: Tensor) -> Tensor:
|
||
|
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
|
||
|
if t.is_floating_point():
|
||
|
return t if t.dtype in (torch.float32, torch.float64) else t.float()
|
||
|
else:
|
||
|
return t if t.dtype in (torch.int32, torch.int64) else t.int()
|
||
|
|
||
|
|
||
|
def box_area(boxes: Tensor) -> Tensor:
|
||
|
"""
|
||
|
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
|
||
|
|
||
|
Args:
|
||
|
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
|
||
|
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
|
||
|
< x2` and `0 <= y1 < y2`.
|
||
|
|
||
|
Returns:
|
||
|
`torch.FloatTensor`: a tensor containing the area for each box.
|
||
|
"""
|
||
|
boxes = _upcast(boxes)
|
||
|
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
||
|
|
||
|
|
||
|
# modified from torchvision to also return the union
|
||
|
def box_iou(boxes1, boxes2):
|
||
|
area1 = box_area(boxes1)
|
||
|
area2 = box_area(boxes2)
|
||
|
|
||
|
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
||
|
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
||
|
|
||
|
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
|
||
|
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
|
||
|
|
||
|
union = area1[:, None] + area2 - inter
|
||
|
|
||
|
iou = inter / union
|
||
|
return iou, union
|
||
|
|
||
|
|
||
|
def generalized_box_iou(boxes1, boxes2):
|
||
|
"""
|
||
|
Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.
|
||
|
|
||
|
Returns:
|
||
|
`torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
|
||
|
"""
|
||
|
# degenerate boxes gives inf / nan results
|
||
|
# so do an early check
|
||
|
if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
|
||
|
raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
|
||
|
if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
|
||
|
raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
|
||
|
iou, union = box_iou(boxes1, boxes2)
|
||
|
|
||
|
top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
|
||
|
bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
|
||
|
|
||
|
width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
|
||
|
area = width_height[:, :, 0] * width_height[:, :, 1]
|
||
|
|
||
|
return iou - (area - union) / area
|
||
|
|
||
|
|
||
|
# below: taken from https://github.com/facebookresearch/detr/blob/master/util/misc.py#L306
|
||
|
def _max_by_axis(the_list):
|
||
|
# type: (List[List[int]]) -> List[int]
|
||
|
maxes = the_list[0]
|
||
|
for sublist in the_list[1:]:
|
||
|
for index, item in enumerate(sublist):
|
||
|
maxes[index] = max(maxes[index], item)
|
||
|
return maxes
|
||
|
|
||
|
|
||
|
class NestedTensor(object):
|
||
|
def __init__(self, tensors, mask: Optional[Tensor]):
|
||
|
self.tensors = tensors
|
||
|
self.mask = mask
|
||
|
|
||
|
def to(self, device):
|
||
|
cast_tensor = self.tensors.to(device)
|
||
|
mask = self.mask
|
||
|
if mask is not None:
|
||
|
cast_mask = mask.to(device)
|
||
|
else:
|
||
|
cast_mask = None
|
||
|
return NestedTensor(cast_tensor, cast_mask)
|
||
|
|
||
|
def decompose(self):
|
||
|
return self.tensors, self.mask
|
||
|
|
||
|
def __repr__(self):
|
||
|
return str(self.tensors)
|
||
|
|
||
|
|
||
|
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
|
||
|
if tensor_list[0].ndim == 3:
|
||
|
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
|
||
|
batch_shape = [len(tensor_list)] + max_size
|
||
|
batch_size, num_channels, height, width = batch_shape
|
||
|
dtype = tensor_list[0].dtype
|
||
|
device = tensor_list[0].device
|
||
|
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
||
|
mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
|
||
|
for img, pad_img, m in zip(tensor_list, tensor, mask):
|
||
|
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
||
|
m[: img.shape[1], : img.shape[2]] = False
|
||
|
else:
|
||
|
raise ValueError("Only 3-dimensional tensors are supported")
|
||
|
return NestedTensor(tensor, mask)
|