ai-content-maker/.venv/Lib/site-packages/transformers/models/detr/modeling_detr.py

2452 lines
114 KiB
Python

# coding=utf-8
# Copyright 2021 Facebook AI Research The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DETR model."""
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import torch
from torch import Tensor, nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions, Seq2SeqModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_accelerate_available,
is_scipy_available,
is_timm_available,
is_vision_available,
logging,
replace_return_docstrings,
requires_backends,
)
from ...utils.backbone_utils import load_backbone
from .configuration_detr import DetrConfig
if is_accelerate_available():
from accelerate import PartialState
from accelerate.utils import reduce
if is_scipy_available():
from scipy.optimize import linear_sum_assignment
if is_timm_available():
from timm import create_model
if is_vision_available():
from transformers.image_transforms import center_to_corners_format
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DetrConfig"
_CHECKPOINT_FOR_DOC = "facebook/detr-resnet-50"
from ..deprecated._archive_maps import DETR_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
@dataclass
class DetrDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
Base class for outputs of the DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions,
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
intermediate_hidden_states: Optional[torch.FloatTensor] = None
@dataclass
class DetrModelOutput(Seq2SeqModelOutput):
"""
Base class for outputs of the DETR encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput,
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
intermediate_hidden_states: Optional[torch.FloatTensor] = None
@dataclass
class DetrObjectDetectionOutput(ModelOutput):
"""
Output type of [`DetrForObjectDetection`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
auxiliary_outputs (`list[Dict]`, *optional*):
Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
pred_boxes: torch.FloatTensor = None
auxiliary_outputs: Optional[List[Dict]] = None
last_hidden_state: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class DetrSegmentationOutput(ModelOutput):
"""
Output type of [`DetrForSegmentation`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
pred_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height/4, width/4)`):
Segmentation masks logits for all queries. See also
[`~DetrImageProcessor.post_process_semantic_segmentation`] or
[`~DetrImageProcessor.post_process_instance_segmentation`]
[`~DetrImageProcessor.post_process_panoptic_segmentation`] to evaluate semantic, instance and panoptic
segmentation masks respectively.
auxiliary_outputs (`list[Dict]`, *optional*):
Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
pred_boxes: torch.FloatTensor = None
pred_masks: torch.FloatTensor = None
auxiliary_outputs: Optional[List[Dict]] = None
last_hidden_state: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
# BELOW: utilities copied from
# https://github.com/facebookresearch/detr/blob/master/backbone.py
class DetrFrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
torchvision.models.resnet[18,34,50,101] produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it user-friendly
weight = self.weight.reshape(1, -1, 1, 1)
bias = self.bias.reshape(1, -1, 1, 1)
running_var = self.running_var.reshape(1, -1, 1, 1)
running_mean = self.running_mean.reshape(1, -1, 1, 1)
epsilon = 1e-5
scale = weight * (running_var + epsilon).rsqrt()
bias = bias - running_mean * scale
return x * scale + bias
def replace_batch_norm(model):
r"""
Recursively replace all `torch.nn.BatchNorm2d` with `DetrFrozenBatchNorm2d`.
Args:
model (torch.nn.Module):
input model
"""
for name, module in model.named_children():
if isinstance(module, nn.BatchNorm2d):
new_module = DetrFrozenBatchNorm2d(module.num_features)
if not module.weight.device == torch.device("meta"):
new_module.weight.data.copy_(module.weight)
new_module.bias.data.copy_(module.bias)
new_module.running_mean.data.copy_(module.running_mean)
new_module.running_var.data.copy_(module.running_var)
model._modules[name] = new_module
if len(list(module.children())) > 0:
replace_batch_norm(module)
class DetrConvEncoder(nn.Module):
"""
Convolutional backbone, using either the AutoBackbone API or one from the timm library.
nn.BatchNorm2d layers are replaced by DetrFrozenBatchNorm2d as defined above.
"""
def __init__(self, config):
super().__init__()
self.config = config
if config.use_timm_backbone:
requires_backends(self, ["timm"])
kwargs = {}
if config.dilation:
kwargs["output_stride"] = 16
backbone = create_model(
config.backbone,
pretrained=config.use_pretrained_backbone,
features_only=True,
out_indices=(1, 2, 3, 4),
in_chans=config.num_channels,
**kwargs,
)
else:
backbone = load_backbone(config)
# replace batch norm by frozen batch norm
with torch.no_grad():
replace_batch_norm(backbone)
self.model = backbone
self.intermediate_channel_sizes = (
self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
)
backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type
if "resnet" in backbone_model_type:
for name, parameter in self.model.named_parameters():
if config.use_timm_backbone:
if "layer2" not in name and "layer3" not in name and "layer4" not in name:
parameter.requires_grad_(False)
else:
if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
parameter.requires_grad_(False)
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
# send pixel_values through the model to get list of feature maps
features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps
out = []
for feature_map in features:
# downsample pixel_mask to match shape of corresponding feature_map
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
out.append((feature_map, mask))
return out
class DetrConvModel(nn.Module):
"""
This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
"""
def __init__(self, conv_encoder, position_embedding):
super().__init__()
self.conv_encoder = conv_encoder
self.position_embedding = position_embedding
def forward(self, pixel_values, pixel_mask):
# send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
out = self.conv_encoder(pixel_values, pixel_mask)
pos = []
for feature_map, mask in out:
# position encoding
pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))
return out, pos
class DetrSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.embedding_dim = embedding_dim
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, pixel_values, pixel_mask):
if pixel_mask is None:
raise ValueError("No pixel mask provided")
y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale
dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float()
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
class DetrLearnedPositionEmbedding(nn.Module):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, embedding_dim=256):
super().__init__()
self.row_embeddings = nn.Embedding(50, embedding_dim)
self.column_embeddings = nn.Embedding(50, embedding_dim)
def forward(self, pixel_values, pixel_mask=None):
height, width = pixel_values.shape[-2:]
width_values = torch.arange(width, device=pixel_values.device)
height_values = torch.arange(height, device=pixel_values.device)
x_emb = self.column_embeddings(width_values)
y_emb = self.row_embeddings(height_values)
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
return pos
def build_position_encoding(config):
n_steps = config.d_model // 2
if config.position_embedding_type == "sine":
# TODO find a better way of exposing other arguments
position_embedding = DetrSinePositionEmbedding(n_steps, normalize=True)
elif config.position_embedding_type == "learned":
position_embedding = DetrLearnedPositionEmbedding(n_steps)
else:
raise ValueError(f"Not supported {config.position_embedding_type}")
return position_embedding
class DetrAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper.
Here, we add position embeddings to the queries and keys (as explained in the DETR paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs):
position_embeddings = kwargs.pop("position_embeddings", None)
if kwargs:
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
if position_embeddings is not None and object_queries is not None:
raise ValueError(
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
)
if position_embeddings is not None:
logger.warning_once(
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
)
object_queries = position_embeddings
return tensor if object_queries is None else tensor + object_queries
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
object_queries: Optional[torch.Tensor] = None,
key_value_states: Optional[torch.Tensor] = None,
spatial_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
position_embeddings = kwargs.pop("position_ebmeddings", None)
key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None)
if kwargs:
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
if position_embeddings is not None and object_queries is not None:
raise ValueError(
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
)
if key_value_position_embeddings is not None and spatial_position_embeddings is not None:
raise ValueError(
"Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings"
)
if position_embeddings is not None:
logger.warning_once(
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
)
object_queries = position_embeddings
if key_value_position_embeddings is not None:
logger.warning_once(
"key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead"
)
spatial_position_embeddings = key_value_position_embeddings
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if object_queries is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, object_queries)
# add key-value position embeddings to the key value states
if spatial_position_embeddings is not None:
key_value_states_original = key_value_states
key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
class DetrEncoderLayer(nn.Module):
def __init__(self, config: DetrConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = DetrAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
object_queries: torch.Tensor = None,
output_attentions: bool = False,
**kwargs,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
object_queries (`torch.FloatTensor`, *optional*):
Object queries (also called content embeddings), to be added to the hidden states.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
position_embeddings = kwargs.pop("position_embeddings", None)
if kwargs:
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
if position_embeddings is not None and object_queries is not None:
raise ValueError(
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
)
if position_embeddings is not None:
logger.warning_once(
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
)
object_queries = position_embeddings
residual = hidden_states
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
object_queries=object_queries,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class DetrDecoderLayer(nn.Module):
def __init__(self, config: DetrConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = DetrAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = DetrAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
object_queries: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
**kwargs,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
object_queries (`torch.FloatTensor`, *optional*):
object_queries that are added to the hidden states
in the cross-attention layer.
query_position_embeddings (`torch.FloatTensor`, *optional*):
position embeddings that are added to the queries and keys
in the self-attention layer.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
position_embeddings = kwargs.pop("position_embeddings", None)
if kwargs:
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
if position_embeddings is not None and object_queries is not None:
raise ValueError(
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
)
if position_embeddings is not None:
logger.warning_once(
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
)
object_queries = position_embeddings
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
object_queries=query_position_embeddings,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
object_queries=query_position_embeddings,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
spatial_position_embeddings=object_queries,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class DetrClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class DetrPreTrainedModel(PreTrainedModel):
config_class = DetrConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
_no_split_modules = [r"DetrConvEncoder", r"DetrEncoderLayer", r"DetrDecoderLayer"]
def _init_weights(self, module):
std = self.config.init_std
xavier_std = self.config.init_xavier_std
if isinstance(module, DetrMHAttentionMap):
nn.init.zeros_(module.k_linear.bias)
nn.init.zeros_(module.q_linear.bias)
nn.init.xavier_uniform_(module.k_linear.weight, gain=xavier_std)
nn.init.xavier_uniform_(module.q_linear.weight, gain=xavier_std)
elif isinstance(module, DetrLearnedPositionEmbedding):
nn.init.uniform_(module.row_embeddings.weight)
nn.init.uniform_(module.column_embeddings.weight)
if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
DETR_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DetrConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DETR_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it.
Pixel values can be obtained using [`AutoImageProcessor`]. See [`DetrImageProcessor.__call__`] for details.
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
Not used by default. Can be used to mask object queries.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
can choose to directly pass a flattened representation of an image.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
embedded representation.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class DetrEncoder(DetrPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`DetrEncoderLayer`].
The encoder updates the flattened feature map through multiple self-attention layers.
Small tweak for DETR:
- object_queries are added to the forward pass.
Args:
config: DetrConfig
"""
def __init__(self, config: DetrConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.layers = nn.ModuleList([DetrEncoderLayer(config) for _ in range(config.encoder_layers)])
# in the original DETR, no layernorm is used at the end of the encoder, as "normalize_before" is set to False by default
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
attention_mask=None,
object_queries=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Object queries that are added to the queries in each self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
position_embeddings = kwargs.pop("position_embeddings", None)
if kwargs:
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
if position_embeddings is not None and object_queries is not None:
raise ValueError(
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
)
if position_embeddings is not None:
logger.warning_once(
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
)
object_queries = position_embeddings
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
# we add object_queries as extra input to the encoder_layer
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
object_queries=object_queries,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class DetrDecoder(DetrPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DetrDecoderLayer`].
The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
Some small tweaks for DETR:
- object_queries and query_position_embeddings are added to the forward pass.
- if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers.
Args:
config: DetrConfig
"""
def __init__(self, config: DetrConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.layers = nn.ModuleList([DetrDecoderLayer(config) for _ in range(config.decoder_layers)])
# in DETR, the decoder uses layernorm after the last decoder layer output
self.layernorm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
object_queries=None,
query_position_embeddings=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The query embeddings that are passed into the decoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`:
- 1 for queries that are **not masked**,
- 0 for queries that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Object queries that are added to the queries and keys in each cross-attention layer.
query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
, *optional*): Position embeddings that are added to the values and keys in each self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
position_embeddings = kwargs.pop("position_embeddings", None)
if kwargs:
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
if position_embeddings is not None and object_queries is not None:
raise ValueError(
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
)
if position_embeddings is not None:
logger.warning_once(
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
)
object_queries = position_embeddings
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
input_shape = inputs_embeds.size()[:-1]
combined_attention_mask = None
if attention_mask is not None and combined_attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# optional intermediate hidden states
intermediate = () if self.config.auxiliary_loss else None
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
combined_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if self.config.auxiliary_loss:
hidden_states = self.layernorm(hidden_states)
intermediate += (hidden_states,)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# finally, apply layernorm
hidden_states = self.layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# stack intermediate decoder activations
if self.config.auxiliary_loss:
intermediate = torch.stack(intermediate)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate]
if v is not None
)
return DetrDecoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
intermediate_hidden_states=intermediate,
)
@add_start_docstrings(
"""
The bare DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states without
any specific head on top.
""",
DETR_START_DOCSTRING,
)
class DetrModel(DetrPreTrainedModel):
def __init__(self, config: DetrConfig):
super().__init__(config)
# Create backbone + positional encoding
backbone = DetrConvEncoder(config)
object_queries = build_position_encoding(config)
self.backbone = DetrConvModel(backbone, object_queries)
# Create projection layer
self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1)
self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model)
self.encoder = DetrEncoder(config)
self.decoder = DetrDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(False)
def unfreeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(True)
@add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DetrModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DetrModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DetrModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
>>> model = DetrModel.from_pretrained("facebook/detr-resnet-50")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> # the last hidden states are the final query embeddings of the Transformer decoder
>>> # these are of shape (batch_size, num_queries, hidden_size)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 100, 256]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones(((batch_size, height, width)), device=device)
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
# pixel_values should be of shape (batch_size, num_channels, height, width)
# pixel_mask should be of shape (batch_size, height, width)
features, object_queries_list = self.backbone(pixel_values, pixel_mask)
# get final feature map and downsampled mask
feature_map, mask = features[-1]
if mask is None:
raise ValueError("Backbone does not return downsampled pixel mask")
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
projected_feature_map = self.input_projection(feature_map)
# Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1)
flattened_mask = mask.flatten(1)
# Fourth, sent flattened_features + flattened_mask + position embeddings through encoder
# flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
# flattened_mask is a Tensor of shape (batch_size, heigth*width)
if encoder_outputs is None:
encoder_outputs = self.encoder(
inputs_embeds=flattened_features,
attention_mask=flattened_mask,
object_queries=object_queries,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output)
query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1)
queries = torch.zeros_like(query_position_embeddings)
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
inputs_embeds=queries,
attention_mask=None,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=flattened_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return DetrModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
)
@add_start_docstrings(
"""
DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks
such as COCO detection.
""",
DETR_START_DOCSTRING,
)
class DetrForObjectDetection(DetrPreTrainedModel):
def __init__(self, config: DetrConfig):
super().__init__(config)
# DETR encoder-decoder model
self.model = DetrModel(config)
# Object detection heads
self.class_labels_classifier = nn.Linear(
config.d_model, config.num_labels + 1
) # We add one for the "no object" class
self.bbox_predictor = DetrMLPPredictionHead(
input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
)
# Initialize weights and apply final processing
self.post_init()
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
@add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DetrObjectDetectionOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DetrForObjectDetection
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
>>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
... 0
... ]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
... box = [round(i, 2) for i in box.tolist()]
... print(
... f"Detected {model.config.id2label[label.item()]} with confidence "
... f"{round(score.item(), 3)} at location {box}"
... )
Detected remote with confidence 0.998 at location [40.16, 70.81, 175.55, 117.98]
Detected remote with confidence 0.996 at location [333.24, 72.55, 368.33, 187.66]
Detected couch with confidence 0.995 at location [-0.02, 1.15, 639.73, 473.76]
Detected cat with confidence 0.999 at location [13.24, 52.05, 314.02, 470.93]
Detected cat with confidence 0.999 at location [345.4, 23.85, 640.37, 368.72]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# First, sent images through DETR base model to obtain encoder + decoder outputs
outputs = self.model(
pixel_values,
pixel_mask=pixel_mask,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# class logits + predicted bounding boxes
logits = self.class_labels_classifier(sequence_output)
pred_boxes = self.bbox_predictor(sequence_output).sigmoid()
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
# First: create the matcher
matcher = DetrHungarianMatcher(
class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
)
# Second: create the criterion
losses = ["labels", "boxes", "cardinality"]
criterion = DetrLoss(
matcher=matcher,
num_classes=self.config.num_labels,
eos_coef=self.config.eos_coefficient,
losses=losses,
)
criterion.to(self.device)
# Third: compute the losses, based on outputs and labels
outputs_loss = {}
outputs_loss["logits"] = logits
outputs_loss["pred_boxes"] = pred_boxes
if self.config.auxiliary_loss:
intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4]
outputs_class = self.class_labels_classifier(intermediate)
outputs_coord = self.bbox_predictor(intermediate).sigmoid()
auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord)
outputs_loss["auxiliary_outputs"] = auxiliary_outputs
loss_dict = criterion(outputs_loss, labels)
# Fourth: compute total loss, as a weighted sum of the various losses
weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
weight_dict["loss_giou"] = self.config.giou_loss_coefficient
if self.config.auxiliary_loss:
aux_weight_dict = {}
for i in range(self.config.decoder_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes) + auxiliary_outputs + outputs
else:
output = (logits, pred_boxes) + outputs
return ((loss, loss_dict) + output) if loss is not None else output
return DetrObjectDetectionOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=outputs.last_hidden_state,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
DETR Model (consisting of a backbone and encoder-decoder Transformer) with a segmentation head on top, for tasks
such as COCO panoptic.
""",
DETR_START_DOCSTRING,
)
class DetrForSegmentation(DetrPreTrainedModel):
def __init__(self, config: DetrConfig):
super().__init__(config)
# object detection model
self.detr = DetrForObjectDetection(config)
# segmentation head
hidden_size, number_of_heads = config.d_model, config.encoder_attention_heads
intermediate_channel_sizes = self.detr.model.backbone.conv_encoder.intermediate_channel_sizes
self.mask_head = DetrMaskHeadSmallConv(
hidden_size + number_of_heads, intermediate_channel_sizes[::-1][-3:], hidden_size
)
self.bbox_attention = DetrMHAttentionMap(
hidden_size, hidden_size, number_of_heads, dropout=0.0, std=config.init_xavier_std
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DetrSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DetrSegmentationOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each
dictionary containing at least the following 3 keys: 'class_labels', 'boxes' and 'masks' (the class labels,
bounding boxes and segmentation masks of an image in the batch respectively). The class labels themselves
should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)`, the boxes a
`torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)` and the masks a
`torch.FloatTensor` of shape `(number of bounding boxes in the image, height, width)`.
Returns:
Examples:
```python
>>> import io
>>> import requests
>>> from PIL import Image
>>> import torch
>>> import numpy
>>> from transformers import AutoImageProcessor, DetrForSegmentation
>>> from transformers.image_transforms import rgb_to_id
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic")
>>> model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> # Use the `post_process_panoptic_segmentation` method of the `image_processor` to retrieve post-processed panoptic segmentation maps
>>> # Segmentation results are returned as a list of dictionaries
>>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(300, 500)])
>>> # A tensor of shape (height, width) where each value denotes a segment id, filled with -1 if no segment is found
>>> panoptic_seg = result[0]["segmentation"]
>>> # Get prediction score and segment_id to class_id mapping of each segment
>>> panoptic_segments_info = result[0]["segments_info"]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=device)
# First, get list of feature maps and position embeddings
features, object_queries_list = self.detr.model.backbone(pixel_values, pixel_mask=pixel_mask)
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
feature_map, mask = features[-1]
batch_size, num_channels, height, width = feature_map.shape
projected_feature_map = self.detr.model.input_projection(feature_map)
# Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1)
flattened_mask = mask.flatten(1)
# Fourth, sent flattened_features + flattened_mask + position embeddings through encoder
# flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
# flattened_mask is a Tensor of shape (batch_size, heigth*width)
if encoder_outputs is None:
encoder_outputs = self.detr.model.encoder(
inputs_embeds=flattened_features,
attention_mask=flattened_mask,
object_queries=object_queries,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Fifth, sent query embeddings + position embeddings through the decoder (which is conditioned on the encoder output)
query_position_embeddings = self.detr.model.query_position_embeddings.weight.unsqueeze(0).repeat(
batch_size, 1, 1
)
queries = torch.zeros_like(query_position_embeddings)
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
decoder_outputs = self.detr.model.decoder(
inputs_embeds=queries,
attention_mask=None,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=flattened_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# Sixth, compute logits, pred_boxes and pred_masks
logits = self.detr.class_labels_classifier(sequence_output)
pred_boxes = self.detr.bbox_predictor(sequence_output).sigmoid()
memory = encoder_outputs[0].permute(0, 2, 1).view(batch_size, self.config.d_model, height, width)
mask = flattened_mask.view(batch_size, height, width)
# FIXME h_boxes takes the last one computed, keep this in mind
# important: we need to reverse the mask, since in the original implementation the mask works reversed
# bbox_mask is of shape (batch_size, num_queries, number_of_attention_heads in bbox_attention, height/32, width/32)
bbox_mask = self.bbox_attention(sequence_output, memory, mask=~mask)
seg_masks = self.mask_head(projected_feature_map, bbox_mask, [features[2][0], features[1][0], features[0][0]])
pred_masks = seg_masks.view(batch_size, self.detr.config.num_queries, seg_masks.shape[-2], seg_masks.shape[-1])
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
# First: create the matcher
matcher = DetrHungarianMatcher(
class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
)
# Second: create the criterion
losses = ["labels", "boxes", "cardinality", "masks"]
criterion = DetrLoss(
matcher=matcher,
num_classes=self.config.num_labels,
eos_coef=self.config.eos_coefficient,
losses=losses,
)
criterion.to(self.device)
# Third: compute the losses, based on outputs and labels
outputs_loss = {}
outputs_loss["logits"] = logits
outputs_loss["pred_boxes"] = pred_boxes
outputs_loss["pred_masks"] = pred_masks
if self.config.auxiliary_loss:
intermediate = decoder_outputs.intermediate_hidden_states if return_dict else decoder_outputs[-1]
outputs_class = self.detr.class_labels_classifier(intermediate)
outputs_coord = self.detr.bbox_predictor(intermediate).sigmoid()
auxiliary_outputs = self.detr._set_aux_loss(outputs_class, outputs_coord)
outputs_loss["auxiliary_outputs"] = auxiliary_outputs
loss_dict = criterion(outputs_loss, labels)
# Fourth: compute total loss, as a weighted sum of the various losses
weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
weight_dict["loss_giou"] = self.config.giou_loss_coefficient
weight_dict["loss_mask"] = self.config.mask_loss_coefficient
weight_dict["loss_dice"] = self.config.dice_loss_coefficient
if self.config.auxiliary_loss:
aux_weight_dict = {}
for i in range(self.config.decoder_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes, pred_masks) + auxiliary_outputs + decoder_outputs + encoder_outputs
else:
output = (logits, pred_boxes, pred_masks) + decoder_outputs + encoder_outputs
return ((loss, loss_dict) + output) if loss is not None else output
return DetrSegmentationOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
pred_masks=pred_masks,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def _expand(tensor, length: int):
return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1)
# taken from https://github.com/facebookresearch/detr/blob/master/models/segmentation.py
class DetrMaskHeadSmallConv(nn.Module):
"""
Simple convolutional head, using group norm. Upsampling is done using a FPN approach
"""
def __init__(self, dim, fpn_dims, context_dim):
super().__init__()
if dim % 8 != 0:
raise ValueError(
"The hidden_size + number of attention heads must be divisible by 8 as the number of groups in"
" GroupNorm is set to 8"
)
inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64]
self.lay1 = nn.Conv2d(dim, dim, 3, padding=1)
self.gn1 = nn.GroupNorm(8, dim)
self.lay2 = nn.Conv2d(dim, inter_dims[1], 3, padding=1)
self.gn2 = nn.GroupNorm(min(8, inter_dims[1]), inter_dims[1])
self.lay3 = nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1)
self.gn3 = nn.GroupNorm(min(8, inter_dims[2]), inter_dims[2])
self.lay4 = nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1)
self.gn4 = nn.GroupNorm(min(8, inter_dims[3]), inter_dims[3])
self.lay5 = nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1)
self.gn5 = nn.GroupNorm(min(8, inter_dims[4]), inter_dims[4])
self.out_lay = nn.Conv2d(inter_dims[4], 1, 3, padding=1)
self.dim = dim
self.adapter1 = nn.Conv2d(fpn_dims[0], inter_dims[1], 1)
self.adapter2 = nn.Conv2d(fpn_dims[1], inter_dims[2], 1)
self.adapter3 = nn.Conv2d(fpn_dims[2], inter_dims[3], 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight, a=1)
nn.init.constant_(m.bias, 0)
def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]):
# here we concatenate x, the projected feature map, of shape (batch_size, d_model, heigth/32, width/32) with
# the bbox_mask = the attention maps of shape (batch_size, n_queries, n_heads, height/32, width/32).
# We expand the projected feature map to match the number of heads.
x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)
x = self.lay1(x)
x = self.gn1(x)
x = nn.functional.relu(x)
x = self.lay2(x)
x = self.gn2(x)
x = nn.functional.relu(x)
cur_fpn = self.adapter1(fpns[0])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay3(x)
x = self.gn3(x)
x = nn.functional.relu(x)
cur_fpn = self.adapter2(fpns[1])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay4(x)
x = self.gn4(x)
x = nn.functional.relu(x)
cur_fpn = self.adapter3(fpns[2])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay5(x)
x = self.gn5(x)
x = nn.functional.relu(x)
x = self.out_lay(x)
return x
class DetrMHAttentionMap(nn.Module):
"""This is a 2D attention module, which only returns the attention softmax (no multiplication by value)"""
def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True, std=None):
super().__init__()
self.num_heads = num_heads
self.hidden_dim = hidden_dim
self.dropout = nn.Dropout(dropout)
self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5
def forward(self, q, k, mask: Optional[Tensor] = None):
q = self.q_linear(q)
k = nn.functional.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias)
queries_per_head = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads)
keys_per_head = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1])
weights = torch.einsum("bqnc,bnchw->bqnhw", queries_per_head * self.normalize_fact, keys_per_head)
if mask is not None:
weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), torch.finfo(weights.dtype).min)
weights = nn.functional.softmax(weights.flatten(2), dim=-1).view(weights.size())
weights = self.dropout(weights)
return weights
def dice_loss(inputs, targets, num_boxes):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs (0 for the negative class and 1 for the positive
class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_boxes
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs (`torch.FloatTensor` of arbitrary shape):
The predictions for each example.
targets (`torch.FloatTensor` with the same shape as `inputs`)
A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class
and 1 for the positive class).
alpha (`float`, *optional*, defaults to `0.25`):
Optional weighting factor in the range (0,1) to balance positive vs. negative examples.
gamma (`int`, *optional*, defaults to `2`):
Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
# add modulating factor
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1).sum() / num_boxes
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
class DetrLoss(nn.Module):
"""
This class computes the losses for DetrForObjectDetection/DetrForSegmentation. The process happens in two steps: 1)
we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair
of matched ground-truth / prediction (supervise class and box).
A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes`
parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is
the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to
be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2
(`max_obj_id` + 1). For more details on this, check the following discussion
https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223"
Args:
matcher (`DetrHungarianMatcher`):
Module able to compute a matching between targets and proposals.
num_classes (`int`):
Number of object categories, omitting the special no-object category.
eos_coef (`float`):
Relative classification weight applied to the no-object category.
losses (`List[str]`):
List of all the losses to be applied. See `get_loss` for a list of all available losses.
"""
def __init__(self, matcher, num_classes, eos_coef, losses):
super().__init__()
self.matcher = matcher
self.num_classes = num_classes
self.eos_coef = eos_coef
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# removed logging parameter, which was part of the original implementation
def loss_labels(self, outputs, targets, indices, num_boxes):
"""
Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim
[nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
source_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
)
target_classes[idx] = target_classes_o
loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {"loss_ce": loss_ce}
return losses
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
"""
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
"""
logits = outputs["logits"]
device = logits.device
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.
Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
idx = self._get_source_permutation_idx(indices)
source_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
losses = {}
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(
generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
)
losses["loss_giou"] = loss_giou.sum() / num_boxes
return losses
def loss_masks(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the masks: the focal loss and the dice loss.
Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w].
"""
if "pred_masks" not in outputs:
raise KeyError("No predicted masks found in outputs")
source_idx = self._get_source_permutation_idx(indices)
target_idx = self._get_target_permutation_idx(indices)
source_masks = outputs["pred_masks"]
source_masks = source_masks[source_idx]
masks = [t["masks"] for t in targets]
# TODO use valid to mask invalid areas due to padding in loss
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(source_masks)
target_masks = target_masks[target_idx]
# upsample predictions to the target size
source_masks = nn.functional.interpolate(
source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
)
source_masks = source_masks[:, 0].flatten(1)
target_masks = target_masks.flatten(1)
target_masks = target_masks.view(source_masks.shape)
losses = {
"loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes),
"loss_dice": dice_loss(source_masks, target_masks, num_boxes),
}
return losses
def _get_source_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
source_idx = torch.cat([source for (source, _) in indices])
return batch_idx, source_idx
def _get_target_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
target_idx = torch.cat([target for (_, target) in indices])
return batch_idx, target_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes):
loss_map = {
"labels": self.loss_labels,
"cardinality": self.loss_cardinality,
"boxes": self.loss_boxes,
"masks": self.loss_masks,
}
if loss not in loss_map:
raise ValueError(f"Loss {loss} not supported")
return loss_map[loss](outputs, targets, indices, num_boxes)
def forward(self, outputs, targets):
"""
This performs the loss computation.
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes across all nodes, for normalization purposes
num_boxes = sum(len(t["class_labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
world_size = 1
if is_accelerate_available():
if PartialState._shared_state != {}:
num_boxes = reduce(num_boxes)
world_size = PartialState().num_processes
num_boxes = torch.clamp(num_boxes / world_size, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "auxiliary_outputs" in outputs:
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
if loss == "masks":
# Intermediate masks losses are too costly to compute, we ignore them.
continue
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
class DetrMLPPredictionHead(nn.Module):
"""
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
height and width of a bounding box w.r.t. an image.
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
# taken from https://github.com/facebookresearch/detr/blob/master/models/matcher.py
class DetrHungarianMatcher(nn.Module):
"""
This class computes an assignment between the targets and the predictions of the network.
For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
Args:
class_cost:
The relative weight of the classification error in the matching cost.
bbox_cost:
The relative weight of the L1 error of the bounding box coordinates in the matching cost.
giou_cost:
The relative weight of the giou loss of the bounding box in the matching cost.
"""
def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
super().__init__()
requires_backends(self, ["scipy"])
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
raise ValueError("All costs of the Matcher can't be 0")
@torch.no_grad()
def forward(self, outputs, targets):
"""
Args:
outputs (`dict`):
A dictionary that contains at least these entries:
* "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
* "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
targets (`List[dict]`):
A list of targets (len(targets) = batch_size), where each target is a dict containing:
* "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
ground-truth
objects in the target) containing the class labels
* "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.
Returns:
`List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
batch_size, num_queries = outputs["logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
class_cost = -out_prob[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
# below: bounding box utilities taken from https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
def _upcast(t: Tensor) -> Tensor:
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
else:
return t if t.dtype in (torch.int32, torch.int64) else t.int()
def box_area(boxes: Tensor) -> Tensor:
"""
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
Args:
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
< x2` and `0 <= y1 < y2`.
Returns:
`torch.FloatTensor`: a tensor containing the area for each box.
"""
boxes = _upcast(boxes)
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# modified from torchvision to also return the union
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / union
return iou, union
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.
Returns:
`torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
"""
# degenerate boxes gives inf / nan results
# so do an early check
if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
iou, union = box_iou(boxes1, boxes2)
top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
area = width_height[:, :, 0] * width_height[:, :, 1]
return iou - (area - union) / area
# below: taken from https://github.com/facebookresearch/detr/blob/master/util/misc.py#L306
def _max_by_axis(the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
class NestedTensor(object):
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
def to(self, device):
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
if tensor_list[0].ndim == 3:
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
batch_shape = [len(tensor_list)] + max_size
batch_size, num_channels, height, width = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
m[: img.shape[1], : img.shape[2]] = False
else:
raise ValueError("Only 3-dimensional tensors are supported")
return NestedTensor(tensor, mask)