ai-content-maker/.venv/Lib/site-packages/transformers/models/jukebox/modeling_jukebox.py

2667 lines
117 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2022 The OpenAI Team Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Jukebox model."""
import math
import os
from typing import List, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import LayerNorm as FusedLayerNorm
from ...activations import ACT2FN
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, logging
from ...utils.logging import tqdm
from .configuration_jukebox import ATTENTION_PATTERNS, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
def filter_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
"""
Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits (`torch.Tensor`):
logits distribution shape (vocabulary size)
top_k (`int`, *optional*, defaults to 0):
When `top_k >0` keep only top key tokens with highest probability (top-k filtering).
top_p (`int`, *optional*, defaults to 0):
When `top_p>0.0` keep the top tokens with cumulative probability >= `top_p` (nucleus filtering).
"""
logits = logits.clone()
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k, dim=-1)[0][..., -1:]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# indices_to_remove = sorted_indices[sorted_indices_to_remove]
indices_to_remove = torch.zeros_like(logits, dtype=torch.bool).scatter_(
dim=-1, index=sorted_indices, src=sorted_indices_to_remove
)
logits[indices_to_remove] = filter_value
return logits
def get_relevant_lyric_tokens(full_tokens, max_n_lyric_tokens, total_length, offset, duration):
"""
Extract only the relevant tokens based on the character position. A total of `max_n_lyric_tokens` tokens will be
returned. If the provided token sequence is smaller, it will be padded, otherwise, only characters ranging from the
midpoint - `max_n_lyric_tokens//2` to the midpoint + `max_n_lyric_tokens//2` will be returned. This *focuses* on
the most relevant tokens (in time) for the sequence.
Args:
full_tokens (`List[int]`):
List containing the token ids of the entire lyrics.
total_length (`int`):
Total expected length of the music (not all of it is generated, see duration), in samples.
offset (`int`):
Starting sample in the music. If the offset is greater than 0, the lyrics will be shifted take that into
account
duration (`int`):
Expected duration of the generated music, in samples. The duration has to be smaller than the total length,
which represent the overall length of the signal,
"""
full_tokens = full_tokens[0]
if len(full_tokens) < max_n_lyric_tokens:
tokens = torch.cat(
[torch.zeros(max_n_lyric_tokens - len(full_tokens), dtype=torch.long).to(full_tokens.device), full_tokens]
)
indices = [-1] * (max_n_lyric_tokens - len(full_tokens)) + list(range(0, len(full_tokens)))
else:
midpoint = int(len(full_tokens) * (offset + duration / 2.0) / total_length)
midpoint = min(max(midpoint, max_n_lyric_tokens // 2), len(full_tokens) - max_n_lyric_tokens // 2)
tokens = full_tokens[midpoint - max_n_lyric_tokens // 2 : midpoint + max_n_lyric_tokens // 2]
indices = list(range(midpoint - max_n_lyric_tokens // 2, midpoint + max_n_lyric_tokens // 2))
return tokens.unsqueeze(dim=0), indices
# Break total_length into hops/windows of size n_ctx separated by hop_length
def get_starts(total_length, n_ctx, hop_length):
starts = []
for start in range(0, total_length - n_ctx + hop_length, hop_length):
if start + n_ctx >= total_length:
# Last hop could be smaller, we make it n_ctx to maximise context
start = total_length - n_ctx
starts.append(start)
return starts
def get_alignment(music_tokens, labels, prior, config):
level = prior.levels - 1 # Top level used
n_ctx = prior.n_ctx
tokens = music_tokens[level]
batch_size, total_length = tokens.shape[0], tokens.shape[1]
if total_length < n_ctx:
padding_length = n_ctx - total_length
tokens = torch.cat(
[tokens, torch.zeros(batch_size, n_ctx - total_length, dtype=tokens.dtype, device=tokens.device)], dim=1
)
total_length = tokens.shape[1]
else:
padding_length = 0
hop_length = int(config.hop_fraction[-level - 1] * prior.n_ctx)
alignment_head, alignment_layer = config.prior_alignment_head[0], config.prior_alignment_layer[0]
attn_layers = {alignment_layer}
alignment_hops = {}
indices_hops = {}
for start in tqdm(get_starts(total_length, n_ctx, hop_length), desc="Computing lyric to music alignment "):
end = start + n_ctx
# set metadata offset, sample_length and lyrics tokens
metadata, indices_hop = prior.get_metadata(labels, start, config.sample_length, get_indices=True, offset=0)
tokens_bs = torch.chunk(tokens, batch_size, dim=0)
metadata_bs = torch.chunk(metadata, batch_size, dim=0)
w_hops = []
for tokens_i, metadata_i in zip(tokens_bs, metadata_bs):
w_hop = prior.forward_tokens(tokens_i[:, start:end], [], metadata_i, get_attn_weights=attn_layers)
w_hops.append(w_hop[0][:, alignment_head])
del w_hop
weights = torch.cat(w_hops, dim=0)
del w_hops
alignment_hop = weights.float().cpu().numpy()
del weights
# alignment_hop has shape (bs, n_ctx, nb_relevant_lyric_tokens)
# indices_hop is a list of len=bs, each entry of len hps.nb_relevant_lyric_tokens
indices_hops[start] = indices_hop
alignment_hops[start] = alignment_hop
# Combine attn for each hop into attn for full range
# Use indices to place them into correct place for corresponding source tokens
alignments = []
for item in range(batch_size):
# Note each item has different length lyrics
full_tokens = labels[0, 3:]
alignment = np.zeros((total_length, len(full_tokens) + 1))
for start in reversed(get_starts(total_length, n_ctx, hop_length)):
end = start + n_ctx
alignment_hop = alignment_hops[start][item]
indices = indices_hops[start][item]
alignment[start:end, indices] = alignment_hop
alignment = alignment[: total_length - padding_length, :-1] # remove token padding, and last lyric index
alignments.append(alignment)
return alignments
def save_temp_audio(fname, lvl, metas, aud):
aud = torch.clamp(aud, -1, 1).cpu().numpy()
for i in list(range(aud.shape[0])):
if metas is not None:
artists, genres, lyrics = list(metas)[i].values()
path = f"{fname}/lvl_{lvl}-{artists}-{genres}-{lyrics[:5]}-{i}"
np.save(path, aud[i])
else:
np.save(f"{fname}/lvl_{lvl}-sample-{i}", aud[i])
def get_mask(mask, query_length, key_value_length, blocks, spread, device, sample, sample_t):
# returns a mask of shape 1 x 1 x query_length x key_value_length or None if masking is not needed.
if mask is None or query_length == 1:
return None
offset = sample_t - query_length if sample else max(key_value_length - query_length, 0)
if mask == "autoregressive":
# Masked dense
mask = torch.ones(query_length, key_value_length, device=device).tril(offset)
elif mask == "summary":
# Masked summary
mask = torch.ones(query_length, query_length, device=device).tril()
mask = torch.ones(query_length, query_length, device=device).tril()
mask = mask.view(query_length, blocks, query_length // blocks)[:, :-1, -key_value_length // blocks :]
mask = (
torch.nn.functional.pad(
mask,
(0, 0, 1, 0),
value=1,
)
.contiguous()
.view(query_length, key_value_length)
)
elif mask == "prime":
mask = torch.ones(query_length, key_value_length, device=device).tril(offset)
return mask.view(1, 1, query_length, key_value_length)
class JukeboxConv1D(nn.Module):
def __init__(self, input_width, output_width):
super().__init__()
self.input_width = input_width
self.output_width = output_width
weight = torch.empty(input_width, output_width)
bias = torch.zeros(output_width)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias)
def forward(self, hidden_states):
size_out = (*hidden_states.size()[:-1], self.output_width)
hidden_states = torch.addmm(
self.bias.type_as(hidden_states),
hidden_states.view(-1, hidden_states.size(-1)),
self.weight.type_as(hidden_states),
)
hidden_states = hidden_states.view(*size_out)
return hidden_states
class JukeboxResConv1DBlock(nn.Module):
def __init__(self, config, conv_width, depth=1, res_scale=1.0):
super().__init__()
hidden_dim = config.res_convolution_multiplier * conv_width
dilation = config.res_dilation_growth_rate**depth
padding = dilation
self.res_scale = res_scale
self.activation = nn.ReLU()
self.conv1d_1 = nn.Conv1d(conv_width, hidden_dim, 3, 1, padding, dilation)
self.conv1d_2 = nn.Conv1d(hidden_dim, conv_width, 1, 1, 0)
def forward(self, hidden_states):
residuals = hidden_states
hidden_states = self.activation(hidden_states)
hidden_states = self.conv1d_1(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.conv1d_2(hidden_states)
return residuals + self.res_scale * hidden_states
class JukeboxResnet1D(nn.Module):
def __init__(self, config, conv_width, n_depth, reverse_dilation=False):
super().__init__()
self.dilation_cycle = config.res_dilation_cycle
res_scale = 1.0 if not config.conv_res_scale else 1.0 / math.sqrt(n_depth)
blocks = []
for depth in range(n_depth):
block_depth = depth if self.dilation_cycle is None else depth % self.dilation_cycle
blocks.append(JukeboxResConv1DBlock(config, conv_width, block_depth, res_scale))
if reverse_dilation:
blocks = blocks[::-1]
self.resnet_block = nn.ModuleList(blocks)
def forward(self, hidden_states):
for block in self.resnet_block:
hidden_states = block(hidden_states)
return hidden_states
class JukeboxEncoderConvBlock(nn.Module):
def __init__(self, config, embed_dim, hidden_dim, depth, down_t, stride_t):
super().__init__()
blocks = []
filter_t = stride_t * 2
pad_t = stride_t // 2
if down_t > 0:
for i in range(down_t):
blocks.append(nn.Conv1d(embed_dim if i == 0 else hidden_dim, hidden_dim, filter_t, stride_t, pad_t))
blocks.append(JukeboxResnet1D(config, hidden_dim, depth))
self.proj_out = nn.Conv1d(hidden_dim, config.embed_dim, 3, 1, 1)
self.downsample_block = nn.ModuleList(blocks)
def forward(self, hidden_states):
for block in self.downsample_block:
hidden_states = block(hidden_states)
hidden_states = self.proj_out(hidden_states)
return hidden_states
class JukeboxEncoder(nn.Module):
def __init__(self, config, width, depth, levels, downs_t, strides_t):
super().__init__()
self.levels = levels
self.level_blocks = nn.ModuleList()
iterator = zip(list(range(self.levels)), downs_t, strides_t)
for i, down_t, stride_t in iterator:
self.level_blocks.append(
JukeboxEncoderConvBlock(
config, config.conv_input_shape if i == 0 else config.embed_dim, width, depth, down_t, stride_t
)
)
def forward(self, hidden_states):
all_hidden_states = []
# 64, 32, ...
for level in range(self.levels):
level_block = self.level_blocks[level]
hidden_states = level_block(hidden_states)
all_hidden_states.append(hidden_states)
return all_hidden_states
class JukeboxDecoderConvBock(nn.Module):
def __init__(self, config, embed_dim, hidden_dim, depth, down_t, stride_t, reverse_dilation=True):
self.embed_dim = embed_dim
self.hidden_dim = hidden_dim
super().__init__()
blocks = []
if down_t > 0:
filter_t = stride_t * 2
pad_t = stride_t // 2
self.proj_in = nn.Conv1d(embed_dim, hidden_dim, 3, 1, 1)
for i in range(down_t):
blocks.append(JukeboxResnet1D(config, hidden_dim, depth, reverse_dilation))
blocks.append(
nn.ConvTranspose1d(
hidden_dim, hidden_dim if i < down_t - 1 else embed_dim, filter_t, stride_t, pad_t
)
)
self.upsample_block = nn.ModuleList(blocks)
def forward(self, hidden_states):
hidden_states = self.proj_in(hidden_states)
for block in self.upsample_block:
hidden_states = block(hidden_states)
return hidden_states
class JukeboxDecoder(nn.Module):
def __init__(self, config, hidden_dim, depth, levels, downs_t, strides_t):
super().__init__()
self.levels = levels
self.level_blocks = nn.ModuleList()
for level, down_t, stride_t in zip(list(range(self.levels)), downs_t, strides_t):
self.level_blocks.append(
JukeboxDecoderConvBock(config, config.embed_dim, hidden_dim, depth, down_t, stride_t)
)
self.out = nn.Conv1d(config.embed_dim, config.conv_input_shape, 3, 1, 1)
def forward(self, hidden_states, all_levels=True):
hidden_state = hidden_states[-1]
# 32, 64 ...
for level in reversed(range(self.levels)):
level_block = self.level_blocks[level]
hidden_state = level_block(hidden_state)
if level != 0 and all_levels:
hidden_state = hidden_state + hidden_states[level - 1]
hidden_state = self.out(hidden_state)
return hidden_state
class JukeboxBottleneckBlock(nn.Module):
def __init__(self, config: JukeboxVQVAEConfig):
super().__init__()
self.nb_discrete_codes = config.nb_discrete_codes
self.codebook_width = config.embed_dim
self.mu = config.lmu
self.threshold = 1.0
self.init = False
self.codebook_sum = None
self.codebook_elem = None
self.register_buffer("codebook", torch.zeros(self.nb_discrete_codes, self.codebook_width))
def _tile(self, hidden_states):
dim, embed_width = hidden_states.shape
if dim < self.nb_discrete_codes:
n_repeats = (self.nb_discrete_codes + dim - 1) // dim
std = 0.01 / np.sqrt(embed_width)
hidden_states = hidden_states.repeat(n_repeats, 1)
hidden_states = hidden_states + torch.randn_like(hidden_states) * std
return hidden_states
def init_codebook(self, hidden_states):
nb_discrete_codes = self.nb_discrete_codes
self.init = True
codes = self._tile(hidden_states)
self.codebook = codes[torch.randperm(codes.shape[0])][:nb_discrete_codes]
self.codebook_sum = self.codebook
self.codebook_elem = torch.ones(nb_discrete_codes, device=self.codebook.device)
def update_codebook(self, hidden_states, latent_states):
mu, codebook_width, nb_discrete_codes = self.mu, self.codebook_width, self.nb_discrete_codes
with torch.no_grad():
# Calculate new centres
# nb_discrete_codes, batch_size * seq_length
latent_states_onehot = torch.zeros(nb_discrete_codes, hidden_states.shape[0], device=hidden_states.device)
latent_states_onehot.scatter_(0, latent_states.view(1, hidden_states.shape[0]), 1)
_codebook_sum = torch.matmul(latent_states_onehot, hidden_states)
_codebook_elem = latent_states_onehot.sum(dim=-1) # nb_discrete_codes
codes = self._tile(hidden_states)
_random_codebook = codes[torch.randperm(codes.shape[0])][:nb_discrete_codes]
# Update centres
old_codebook = self.codebook
self.codebook_sum = mu * self.codebook_sum + (1.0 - mu) * _codebook_sum
self.codebook_elem = mu * self.codebook_elem + (1.0 - mu) * _codebook_elem # nb_discrete_codes
usage = (self.codebook_elem.view(nb_discrete_codes, 1) >= self.threshold).float()
norm_code = self.codebook_sum.view(nb_discrete_codes, codebook_width) / self.codebook_elem.view(
nb_discrete_codes, 1
)
self.codebook = usage * (norm_code) + (1 - usage) * _random_codebook
_codebook_prob = _codebook_elem / torch.sum(_codebook_elem) # prob of each bin
entropy = -torch.sum(_codebook_prob * torch.log(_codebook_prob + 1e-8)) # entropy ie how diverse
used_curr = (_codebook_elem >= self.threshold).sum()
usage = torch.sum(usage)
dk = torch.norm(self.codebook - old_codebook) / np.sqrt(np.prod(old_codebook.shape))
return {"entropy": entropy, "used_curr": used_curr, "usage": usage, "dk": dk}
def preprocess(self, hidden_states):
hidden_states = hidden_states.permute(0, 2, 1).contiguous()
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
if hidden_states.shape[-1] == self.codebook_width:
prenorm = torch.norm(hidden_states - torch.mean(hidden_states)) / np.sqrt(np.prod(hidden_states.shape))
elif hidden_states.shape[-1] == 2 * self.codebook_width:
x1, x2 = hidden_states[..., : self.codebook_width], hidden_states[..., self.codebook_width :]
prenorm = (torch.norm(x1 - torch.mean(x1)) / np.sqrt(np.prod(x1.shape))) + (
torch.norm(x2 - torch.mean(x2)) / np.sqrt(np.prod(x2.shape))
)
# Normalise
hidden_states = x1 + x2
return hidden_states, prenorm
def postprocess(self, latent_states, dequantised_states, x_shape):
batch_size, time = x_shape
dequantised_states = dequantised_states.view(batch_size, time, -1).permute(0, 2, 1).contiguous()
latent_states = latent_states.view(batch_size, time)
return latent_states, dequantised_states
def quantise(self, latent_states):
# Calculate latent code latent_states
codebook_weights = self.codebook.t()
distance = (
torch.sum(latent_states**2, dim=-1, keepdim=True)
- 2 * torch.matmul(latent_states, codebook_weights)
+ torch.sum(codebook_weights**2, dim=0, keepdim=True)
) # (batch_size * latent_states , codebook_weights)
min_distance, music_tokens = torch.min(distance, dim=-1)
fit = torch.mean(min_distance)
return music_tokens, fit
def dequantise(self, music_tokens):
dequantised_states = F.embedding(music_tokens, self.codebook)
return dequantised_states
def encode(self, latent_states):
samples, _, seq_len = latent_states.shape
# Preprocess.
latent_states, _ = self.preprocess(latent_states)
# Quantise
music_tokens, _ = self.quantise(latent_states)
# Postprocess.
music_tokens = music_tokens.view(samples, seq_len)
return music_tokens
def decode(self, music_tokens):
samples, seq_len = music_tokens.shape
# Dequantise
dequantised_states = self.dequantise(music_tokens)
# Postprocess
dequantised_states = (
dequantised_states.view(samples, seq_len, self.codebook_width).permute(0, 2, 1).contiguous()
)
return dequantised_states
def forward(self, hidden_states, update_codebook=True):
samples, _, seq_len = hidden_states.shape
# Preprocess
hidden_states, prenorm = self.preprocess(hidden_states)
# Init codebook if not inited
if update_codebook and not self.init:
self.init_codebook(hidden_states)
# Quantise and dequantise through bottleneck
music_tokens, fit = self.quantise(hidden_states)
dequantised_states = self.dequantise(music_tokens)
# Update embeddings
if update_codebook:
update_metrics = self.update_codebook(hidden_states, music_tokens)
else:
update_metrics = {}
# Loss
commit_loss = torch.norm(dequantised_states.detach() - hidden_states) ** 2 / np.prod(hidden_states.shape)
# Passthrough
dequantised_states = hidden_states + (dequantised_states - hidden_states).detach()
# Postprocess
music_tokens, dequantised_states = self.postprocess(music_tokens, dequantised_states, (samples, seq_len))
return music_tokens, dequantised_states, commit_loss, dict(fit=fit, pn=prenorm, **update_metrics)
class JukeboxBottleneck(nn.Module):
def __init__(self, config, levels):
super().__init__()
self.levels = levels
self.level_blocks = nn.ModuleList()
for level in range(self.levels):
self.level_blocks.append(JukeboxBottleneckBlock(config))
def encode(self, raw_audio):
music_tokens = [
level_block.encode(hidden_states) for (level_block, hidden_states) in zip(self.level_blocks, raw_audio)
]
return music_tokens
def decode(self, music_tokens, start_level=0, end_level=None):
if end_level is None:
end_level = self.levels
quantised_audio = [
level_block.decode(z) for (level_block, z) in zip(self.level_blocks[start_level:end_level], music_tokens)
]
return quantised_audio
def forward(self, input_audio):
music_tokens, quantised_states, commit_losses, metrics = [], [], [], []
for level in range(self.levels):
level_block = self.level_blocks[-level - 1]
hidden_states = input_audio[level]
sampled_tokens, quantised_state, commit_loss, metric = level_block(
hidden_states, update_codebook=self.training
)
music_tokens.append(sampled_tokens)
if not self.training:
# Be extra paranoid and make sure the encoder weights can't
# change from straight-through estimator
quantised_state = quantised_state.detach()
quantised_states.append(quantised_state)
commit_losses.append(commit_loss)
if self.training:
metrics.append(metric)
return music_tokens, quantised_states, commit_losses, metrics
JUKEBOX_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config (`JukeboxConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"""The Hierarchical VQ-VAE model used in Jukebox. This model follows the Hierarchical VQVAE paper from [Will Williams, Sam
Ringer, Tom Ash, John Hughes, David MacLeod, Jamie Dougherty](https://arxiv.org/abs/2002.08111).
""",
JUKEBOX_START_DOCSTRING,
)
class JukeboxVQVAE(PreTrainedModel):
config_class = JukeboxVQVAEConfig
base_model_prefix = "vqvae"
def _init_weights(self, module):
if isinstance(module, nn.Embedding): # embed_tokens
module.weight.data.normal_(mean=0.0, std=0.02 * self.config.init_scale)
elif isinstance(module, JukeboxConv1D):
if self.config.zero_out:
module.weight.data.zero_()
else:
module.weight.data.normal_(mean=0.0, std=0.02 * self.config.init_scale)
elif isinstance(module, JukeboxResConv1DBlock) and self.config.zero_out:
module.conv1d_2.weight.data.zero_()
module.conv1d_2.bias.data.zero_()
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def __init__(self, config: JukeboxVQVAEConfig):
super().__init__(config)
downs_t = config.res_downs_t
strides_t = config.res_strides_t
if not config.sample_length:
downsamples = [stride**down for stride, down in zip(strides_t, downs_t)]
top_raw_to_tokens = np.prod(downsamples)
config.sample_length = (
config.sample_length_in_seconds * config.sampling_rate // top_raw_to_tokens
) * top_raw_to_tokens
config.sample_length = config.sample_length.astype(int)
self.nb_discrete_codes = config.nb_discrete_codes
self.commit = config.commit
self.sample_length = config.sample_length
self.downsamples = [stride**down for stride, down in zip(strides_t, downs_t)]
self.hop_lengths = np.cumprod(self.downsamples)
self.levels = levels = config.levels
self.music_tokens_shapes = [
(int(self.sample_length // self.hop_lengths[-level - 1])) for level in range(levels)
]
self.multipliers = config.multipliers if config.multipliers is not None else [1] * levels
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
for level in range(levels):
width = config.res_conv_width * self.multipliers[level]
depth = config.res_conv_depth * self.multipliers[level]
self.encoders.append(
JukeboxEncoder(config, width, depth, level + 1, downs_t[: level + 1], strides_t[: level + 1])
)
self.decoders.append(
JukeboxDecoder(config, width, depth, level + 1, downs_t[: level + 1], strides_t[: level + 1])
)
self.bottleneck = JukeboxBottleneck(config, levels)
def _decode(self, music_tokens, start_level=0, end_level=None):
# Decode
if end_level is None:
end_level = self.levels
latent_states = self.bottleneck.decode(music_tokens, start_level=start_level, end_level=end_level)
# Use only lowest level
decoder, dequantised_state = self.decoders[start_level], latent_states[0:1]
dequantised_state = decoder(dequantised_state, all_levels=False)
dequantised_state = dequantised_state.permute(0, 2, 1)
return dequantised_state
def decode(self, music_tokens, start_level=0, end_level=None, bs_chunks=1) -> torch.Tensor:
"""
Transforms the input `music_tokens` to their `raw_audio` representation.
Args:
music_tokens (`torch.LongTensor`):
Tensor of music tokens which will be decoded to raw audio by using the codebook. Each music token
should be an index to a corresponding `code` vector in the codebook.
start_level (`int`, *optional*):
Level at which the decoding process will start. Default to 0.
end_level (`int`, *optional*):
Level at which the decoding process will start. Default to None.
bs_chunks (int, *optional*):
Number of chunks to process at the same time.
"""
token_chunks = [torch.chunk(token, bs_chunks, dim=0) for token in music_tokens]
dequantised_states = []
for i in range(bs_chunks):
music_tokens_i = [chunks[i] for chunks in token_chunks]
dequantised_state = self._decode(music_tokens_i, start_level=start_level, end_level=end_level)
dequantised_states.append(dequantised_state)
return torch.cat(dequantised_states, dim=0)
def _encode(self, raw_audio, start_level=0, end_level=None):
# Encode
if end_level is None:
end_level = self.levels
input_audio = raw_audio.permute(0, 2, 1).float()
latent_states = []
for level in range(self.levels):
encoder = self.encoders[level]
latent_state = encoder(input_audio)
latent_states.append(latent_state[-1])
music_tokens = self.bottleneck.encode(latent_states)
return music_tokens[start_level:end_level]
def encode(self, input_audio, start_level=0, end_level=None, bs_chunks=1):
"""
Transforms the `input_audio` to a discrete representation made out of `music_tokens`.
Args:
input_audio (`torch.Tensor`):
Raw audio which will be encoded to its discrete representation using the codebook. The closest `code`
form the codebook will be computed for each sequence of samples.
start_level (`int`, *optional*, defaults to 0):
Level at which the encoding process will start. Default to 0.
end_level (`int`, *optional*):
Level at which the encoding process will start. Default to None.
bs_chunks (int, *optional*, defaults to 1):
Number of chunks of raw audio to process at the same time.
"""
audio_chunks = torch.chunk(input_audio, bs_chunks, dim=0)
music_tokens_list = []
for chunk_i in audio_chunks:
music_tokens_i = self._encode(chunk_i, start_level=start_level, end_level=end_level)
music_tokens_list.append(music_tokens_i)
music_tokens = [torch.cat(music_tokens_level, dim=0) for music_tokens_level in zip(*music_tokens_list)]
return music_tokens
def sample(self, n_samples):
music_tokens = [
torch.randint(0, self.nb_discrete_codes, size=(n_samples, *music_tokens_shape), device="cpu")
for music_tokens_shape in self.music_tokens_shapes
]
return self.decode(music_tokens)
def forward(self, raw_audio: torch.FloatTensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass of the VQ-VAE, encodes the `raw_audio` to latent states, which are then decoded for each level.
The commit loss, which ensure that the encoder's computed embeddings are close to the codebook vectors, is
computed.
Args:
raw_audio (`torch.FloatTensor`):
Audio input which will be encoded and decoded.
Returns:
`Tuple[torch.Tensor, torch.Tensor]`
Example:
```python
>>> from transformers import JukeboxVQVAE, set_seed
>>> import torch
>>> model = JukeboxVQVAE.from_pretrained("openai/jukebox-1b-lyrics").eval()
>>> set_seed(0)
>>> zs = [torch.randint(100, (4, 1))]
>>> model.decode(zs).shape
torch.Size([4, 8, 1])
```
"""
# Encode/Decode
input_audio = raw_audio.permute(0, 2, 1).float()
latent_states = []
for level in range(self.levels):
encoder = self.encoders[level]
latent_state = encoder(input_audio)
latent_states.append(latent_state[-1])
_, music_tokens, commit_losses, _ = self.bottleneck(latent_states)
dequantised_states = []
for level in range(self.levels):
decoder = self.decoders[level]
dequantised_state = decoder(music_tokens[level : level + 1], all_levels=False)
dequantised_states.append(dequantised_state.permute(0, 2, 1))
commit_loss = sum(commit_losses)
loss = self.commit * commit_loss
return dequantised_states, loss
class JukeboxMLP(nn.Module):
def __init__(self, config):
# a single channel is always used in original code
super().__init__()
embed_dim = config.hidden_size
hidden_dim = int(config.mlp_multiplier * embed_dim)
self.c_fc = JukeboxConv1D(embed_dim, hidden_dim)
self.c_proj = JukeboxConv1D(hidden_dim, embed_dim)
self.act = ACT2FN[config.act_fn]
self.dropout = nn.Dropout(config.resid_dropout)
def forward(self, hidden_states):
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class JukeboxLayerNorm(FusedLayerNorm):
def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
super().__init__(normalized_shape, eps=eps, elementwise_affine=elementwise_affine)
self.width = np.prod(normalized_shape)
self.max_numel = 65535 * self.width
def forward(self, input):
if input.numel() > self.max_numel:
return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps).type_as(input)
else:
return super().forward(input).type_as(input)
class JukeboxAttention(nn.Module):
def __init__(self, config, n_ctx, attn_func="dense_attn"):
super().__init__()
self.embed_dim = config.hidden_size
self.n_heads = config.n_heads
self.dropout = config.attn_dropout
hidden_dim = int(config.attention_multiplier * self.embed_dim)
self.head_dim = hidden_dim // config.n_heads
self.n_ctx = n_ctx
self.hidden_dim = hidden_dim
self.scale = self.head_dim**-0.25
self.mask = config.mask
if attn_func == "cross_attention":
self.c_attn = JukeboxConv1D(self.embed_dim, hidden_dim)
self.c_enc_kv = JukeboxConv1D(self.embed_dim, hidden_dim * 2)
else:
self.c_attn = JukeboxConv1D(self.embed_dim, hidden_dim * 3)
self.c_proj = JukeboxConv1D(hidden_dim, self.embed_dim)
self.attn_dropout = nn.Dropout(config.attn_dropout)
self.resid_dropout = nn.Dropout(config.resid_dropout)
# Sequence of length seq_len is factored as [blocks, seq_len // blocks]
self.attn_func = attn_func
if attn_func == "cross_attention":
self.qkv = self.decode_qkv
elif attn_func == "prime_attn":
self.qkv = self.prime_qkv
else:
self.qkv = self.factored_qkv
ATTENTION_MAP = {
"dense_attn": (self.dense_attn, "autoregressive"),
"block_attn": (self.block_attn, "autoregressive"),
"transpose_block_attn": (self.transpose_block_attn, "autoregressive"),
"prev_block_attn": (self.prev_block_attn, None),
"summary_attn": (self.summary_attn, "summary"),
"summary_spread_attn": (self.summary_spread_attn, "summary"),
"cross_attention": (self.dense_attn, None),
"prime_attn": (self.prime_attn, "prime"),
}
self.attn, self.attn_mask = ATTENTION_MAP[attn_func]
self.blocks = config.blocks
self.spread = config.spread
if self.blocks is not None:
self.block_ctx = self.n_ctx // self.blocks
self.sample_t = 0
self.cache = {}
self.encoder_len = config.nb_relevant_lyric_tokens # length of the encoder input ids
self.record_attn = False
def _attn(self, query_states, key_states, value_states, sample):
scale = self.scale
if self.training:
attention_weight = torch.matmul(query_states * scale, key_states * scale)
else:
attention_weight = torch.matmul(query_states, key_states)
attention_weight.mul_(scale * scale)
attn_weight_type = attention_weight.dtype
attention_weight = attention_weight.float()
if self.mask:
# Generate appropriate mask to mask out all positions before current
# Might take up lot of memory for dense, so can cache it
mask = get_mask(
self.attn_mask,
query_states.size(-2),
key_states.size(-1),
self.blocks,
self.spread,
attention_weight.device,
sample,
self.sample_t,
)
if mask is not None:
attention_weight = attention_weight * mask + -1e9 * (1 - mask)
attention_prob = F.softmax(attention_weight, dim=-1).type(attn_weight_type)
if self.record_attn:
self.attention_prob = attention_prob
if self.attn_func == "prime_attn":
# only keep music queries and lyrics keys/values
self.attention_prob = self.attention_prob[:, :, self.encoder_len :, : self.encoder_len]
attention_prob = self.attn_dropout(attention_prob)
context_states = torch.matmul(attention_prob, value_states)
return context_states
def merge_heads(self, hidden_states):
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
new_hidden_states_shape = (*hidden_states.size()[:-2], hidden_states.size(-2) * hidden_states.size(-1))
return hidden_states.view(*new_hidden_states_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, hidden_states, is_key=False):
new_hidden_states_shape = (
*hidden_states.size()[:-1],
self.n_heads,
hidden_states.size(-1) // self.n_heads,
)
hidden_states = hidden_states.view(*new_hidden_states_shape) # in Tensorflow implem: fct split_states
if is_key:
return hidden_states.permute(0, 2, 3, 1)
else:
return hidden_states.permute(0, 2, 1, 3)
def dense_attn(self, query, key, value, sample):
query = self.split_heads(query)
key = self.split_heads(key, is_key=True)
value = self.split_heads(value)
context_states = self._attn(query, key, value, sample)
context_states = self.merge_heads(context_states)
return context_states
def block_attn(self, query, key, value, sample):
block_ctx = self.block_ctx
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim)
else:
query_length = query.shape[1]
query = query.view(batch_size * query_length // block_ctx, block_ctx, embed_dim)
if query_length < seq_len:
seq_len = query_length
key = key[:, -seq_len:].contiguous()
value = value[:, -seq_len:].contiguous()
key = key.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim)
value = value.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim)
return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim)
def transpose_block_attn(self, query, key, value, sample):
block_ctx = self.block_ctx
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
block_len = (seq_len - 1) % block_ctx
key = key[:, block_len::block_ctx, :]
value = value[:, block_len::block_ctx, :]
return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim)
else:
query_length = query.shape[1]
query = query.view(batch_size, query_length // block_ctx, block_ctx, embed_dim)
query = query.transpose(1, 2).contiguous()
query = query.view(batch_size * block_ctx, query_length // block_ctx, embed_dim)
key = key.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)
key = key.transpose(1, 2).contiguous()
key = key.view(batch_size * block_ctx, seq_len // block_ctx, embed_dim)
value = value.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)
value = value.transpose(1, 2).contiguous()
value = value.view(batch_size * block_ctx, seq_len // block_ctx, embed_dim)
block_attn = self.dense_attn(query, key, value, sample)
block_attn = block_attn.view(batch_size, block_ctx, query_length // block_ctx, embed_dim)
block_attn = block_attn.transpose(1, 2).contiguous()
block_attn = block_attn.view(batch_size, query_length, embed_dim)
return block_attn
def prev_block_attn(self, query, key, value, sample):
block_ctx = self.block_ctx
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
block = (seq_len - 1) // block_ctx
prev_l = (block - 1) * block_ctx
if block > 0:
key = key[:, prev_l : prev_l + block_ctx, :]
value = value[:, prev_l : prev_l + block_ctx, :]
else:
key = torch.zeros(batch_size, block_ctx, embed_dim, device=query.device, dtype=query.dtype)
value = torch.zeros(batch_size, block_ctx, embed_dim, device=query.device, dtype=query.dtype)
return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim)
else:
query_length = query.shape[1]
query = query.view(batch_size * query_length // block_ctx, block_ctx, embed_dim)
key = key.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)[:, :-1, :, :]
key = torch.nn.functional.pad(key, (0, 0, 0, 0, 1, 0))
key = key.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim)
value = value.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)[:, :-1, :, :]
value = torch.nn.functional.pad(value, (0, 0, 0, 0, 1, 0))
value = value.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim)
if query_length < seq_len:
nb_query_blocks = query_length // block_ctx
nb_key_blocks = seq_len // block_ctx
seq_len = query_length
key = key.view(batch_size, nb_key_blocks, block_ctx, embed_dim)[:, -nb_query_blocks:]
key = key.contiguous().view(batch_size * nb_query_blocks, block_ctx, embed_dim)
value = value.view(batch_size, nb_key_blocks, block_ctx, embed_dim)[:, -nb_query_blocks:]
value = value.contiguous().view(batch_size * nb_query_blocks, block_ctx, embed_dim)
return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim)
def summary_attn(self, query, key, value, sample):
blocks = self.blocks
block_ctx = self.block_ctx
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
key = key[:, block_ctx - 1 : blocks * block_ctx - 1 : block_ctx, :]
key = torch.nn.functional.pad(key, (0, 0, 1, 0))
value = value[:, block_ctx - 1 : blocks * block_ctx - 1 : block_ctx, :]
value = torch.nn.functional.pad(value, (0, 0, 1, 0))
return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim)
else:
key = key.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -1, :]
key = torch.nn.functional.pad(key, (0, 0, 1, 0)) # batch_size, blocks, embed_dim
value = value.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -1, :]
value = torch.nn.functional.pad(value, (0, 0, 1, 0)) # batch_size, blocks, embed_dim
return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim)
def summary_spread_attn(self, query, key, value, sample):
blocks = self.blocks
spread = self.spread
batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t
if sample:
raise NotImplementedError
else:
key = key.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -spread:, :]
key = torch.nn.functional.pad(key, (0, 0, 0, 0, 1, 0)).contiguous()
key = key.view(batch_size, blocks * spread, embed_dim)
value = value.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -spread:, :]
value = torch.nn.functional.pad(value, (0, 0, 0, 0, 1, 0)).contiguous()
value = value.view(batch_size, blocks * spread, embed_dim)
return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim)
def prime_attn(self, query, key, value, sample):
encoder_len = self._encoder_len
key = key[:, :encoder_len]
value = value[:, :encoder_len]
return self.dense_attn(query, key, value, sample)
def factored_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False):
curr_ctx = hidden_states.shape[1]
if last_encoder_hidden_states is not None:
raise TypeError("last_encoder_hidden_states should be None")
query, key, value = hidden_states.chunk(3, dim=2)
if sample:
self.sample_t += curr_ctx
key, value = self._append_cache(key, value)
l_cache = self._suff_cache_len()
if self._cache_len() > l_cache:
self._slice_cache(-l_cache)
if curr_ctx > 1:
if self.attn_func != "dense_attn":
query = self._pad_to_block_ctx(query, query=True)
key = self._pad_to_block_ctx(key)
value = self._pad_to_block_ctx(value)
sample = False
else:
key = self.cache["key"]
value = self.cache["value"]
return query, key, value, sample
def prime_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False):
curr_ctx = hidden_states.shape[1]
if last_encoder_hidden_states is not None:
raise TypeError("last_encoder_hidden_states should be None")
query, key, value = hidden_states.chunk(3, dim=2)
if sample:
if self._cache_len() < self._encoder_len:
self._append_cache(key, value)
if self._cache_len() > self._encoder_len:
self._slice_cache(0, self._encoder_len)
key, value = self.cache["key"], self.cache["value"]
self.sample_t += curr_ctx
return query, key, value, sample
def decode_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False):
curr_ctx = hidden_states.shape[1]
query = hidden_states
if sample:
if self.sample_t == 0:
self.cache["key"], self.cache["value"] = self.c_enc_kv(
last_encoder_hidden_states.type_as(hidden_states)
).chunk(2, dim=2)
key, value = self.cache["key"], self.cache["value"]
self.sample_t += curr_ctx
else:
key, value = self.c_enc_kv(last_encoder_hidden_states.type_as(hidden_states)).chunk(2, dim=2)
return query, key, value, sample
def forward(self, hidden_states, last_encoder_hidden_states=None, sample=False):
curr_ctx = hidden_states.shape[1]
hidden_states = self.c_attn(hidden_states)
query, key, value, sample = self.qkv(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=sample
)
attention_scores = self.attn(query, key, value, sample)
if attention_scores.shape[1] != curr_ctx:
offset = self._offset(curr_ctx)
attention_scores = attention_scores[:, offset : offset + curr_ctx, :].contiguous()
attention_scores = self.c_proj(attention_scores)
return self.resid_dropout(attention_scores)
@property
def _encoder_len(self):
encoder_len = self.encoder_len
encoder_blocks = (encoder_len // self.blocks) + 1
return encoder_blocks * self.blocks
def _offset(self, curr_ctx):
if self.attn_func == "dense_attn":
return 0
return (self.sample_t - curr_ctx) % self.block_ctx
def _pad_to_block_ctx(self, hidden_states, query=False):
seq_len = hidden_states.shape[1]
offset = self._offset(seq_len) if query else 0
n_blocks = (seq_len + offset + self.block_ctx - 1) // self.block_ctx
pad = n_blocks * self.block_ctx - seq_len - offset
if pad == 0 and offset == 0:
return hidden_states
else:
return F.pad(hidden_states, (0, 0, offset, pad))
def _cache_len(self):
return 0 if "key" not in self.cache else self.cache["key"].shape[1]
def _suff_cache_len(self):
"""
Precondition:
key and value are appended with the current context and self.sample_t reflects the 1-indexed sample
location in the context.
"""
previous_block_length = (self.sample_t - 1) % self.block_ctx + 1 + self.block_ctx
REQUIRED_CACHE_LEN = {
"dense_attn": self.sample_t,
"block_attn": (self.sample_t - 1) % self.block_ctx + 1,
"transpose_block_attn": self.sample_t,
"prev_block_attn": self.sample_t if self.sample_t <= self.block_ctx else previous_block_length,
"cross_attn": self.encoder_len,
"prime_attn": min(self.sample_t, self._encoder_len),
}
return REQUIRED_CACHE_LEN[self.attn_func]
def _slice_cache(self, start, end=None):
self.cache["key"] = self.cache["key"][:, start:end]
self.cache["value"] = self.cache["value"][:, start:end]
def _append_cache(self, key, value):
if "key" not in self.cache:
self.cache["key"] = key
self.cache["value"] = value
else:
old_key, old_value = key, value
key = torch.cat([self.cache["key"], old_key], dim=1)
value = torch.cat([self.cache["value"], old_value], dim=1)
del self.cache["key"]
del self.cache["value"]
del old_key
del old_value
self.cache["key"] = key
self.cache["value"] = value
return self.cache["key"], self.cache["value"]
def del_cache(self):
self.sample_t = 0
if "key" in self.cache:
del self.cache["key"]
if "value" in self.cache:
del self.cache["value"]
self.cache = {}
class JukeboxBlock(nn.Module):
def __init__(self, config, n_ctx, attn_func="dense_attn"):
super().__init__()
self.width = config.hidden_size
self.attn = JukeboxAttention(config, n_ctx, attn_func=attn_func)
self.layer_norm_0 = JukeboxLayerNorm(config.hidden_size)
self.mlp = JukeboxMLP(config)
self.layer_norm_1 = JukeboxLayerNorm(config.hidden_size)
self.res_scale = 1.0 / config.num_layers if config.attn_res_scale else 1.0
self.attn_func = attn_func
def forward(self, hidden_states, last_encoder_hidden_states, sample=False):
residuals = hidden_states
hidden_states = self.layer_norm_0(hidden_states)
hidden_states = self.attn(hidden_states, last_encoder_hidden_states, sample)
output_states = self.layer_norm_1(residuals + hidden_states)
output_states = self.mlp(output_states)
if self.res_scale == 1.0:
output = residuals + hidden_states + output_states
else:
output = residuals + self.res_scale * (hidden_states + output_states)
return output
class JukeboxLayerStack(nn.Module):
def __init__(self, config, n_ctx):
super().__init__()
self.n_ctx = n_ctx
self.width = config.hidden_size
self.num_layers = config.num_layers
self.blocks = config.blocks
self.attention_pattern = config.attention_pattern
if self.blocks is not None:
self.block_ctx = n_ctx // self.blocks
self.encoder_len = config.nb_relevant_lyric_tokens
self.n_heads = config.n_heads
# Orders of attn_func
attention_pattern = ATTENTION_PATTERNS[self.attention_pattern]
self._attn_mods = nn.ModuleList()
for depth in range(self.num_layers):
self._attn_mods.append(JukeboxBlock(config, n_ctx, attn_func=attention_pattern(depth)))
self.saved_attn_weights = []
def set_record_attn(self, record_attn):
"""
Makes forward prop dump self-attention softmaxes to self.saved_attn_weights.
Args:
record_attn (`Union[bool,set]`):
Either a set of layer indices indicating which layers to store, or a boolean value indicating Whether
to dump all.
"""
def _should_record_attn(layer_idx):
if isinstance(record_attn, bool):
return record_attn
return layer_idx in record_attn
for i, layer in enumerate(self._attn_mods):
layer.attn.record_attn = _should_record_attn(i)
if not record_attn:
self.saved_attn_weights = []
def forward(self, hidden_states, last_encoder_hidden_states=None, sample=False):
# Blocks
for i, attn_layer in enumerate(self._attn_mods):
if attn_layer.attn_func == "cross_attention": # attend to the lyrics
hidden_states = attn_layer(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=sample
)
else:
hidden_states = attn_layer(hidden_states, last_encoder_hidden_states=None, sample=sample)
if attn_layer.attn.record_attn:
self.saved_attn_weights.append(attn_layer.attn.c_attn.weight)
return hidden_states
def del_cache(self):
for attn_layer in self._attn_mods:
attn_layer.attn.del_cache()
class JukeboxPositionalEmbedding(nn.Module):
def __init__(self, embed_dim, width):
super().__init__()
self.pos_emb = nn.Parameter(torch.empty((embed_dim, width)))
def forward(self):
pos_emb = self.pos_emb
return pos_emb
class JukeboxConditionalAutoregressive(nn.Module):
def __init__(
self,
config,
n_ctx=None,
embed_dim=None,
audio_conditioning=False,
metadata_conditioning=False,
is_encoder=False,
):
"""
Autoregressive model on either lyric tokens or music tokens, or both. The attention pattern should be properly
set fro each configuration.
Args:
config (`JukeboxPriorConfig`):
Model configuration class with all the parameters of the model. Initializing with a config file does
not load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
n_ctx (`int`, *optional*):
Number of tokens or lyrics tokens provided in a single pass.
embed_dim (`int`, *optional*):
Either equals to the dimension of the codebook, or the sum of n_vocab (lyrics) and codeboook dimension,
if the model combines lyrics and music tokens, or simply n_vocab if the model is a seperate encoder
audio_conditioning (`bool`, *optional*, defaults to `False`):
Whether or not the prior supports conditionning on audio.
metadata_conditioning (`bool`, *optional*, defaults to `False`):
Whether or not the prior supports conditionning on artitst, genres, lyrics and timing.
is_encoder (`bool`, *optional*, defaults to `False`):
Whether the model is an encoder only model.
"""
super().__init__()
self.width = config.hidden_size
self.num_layers = config.num_layers
self.n_ctx = n_ctx if n_ctx is not None else config.n_ctx
self.embed_dim = embed_dim if embed_dim is not None else config.music_vocab_size
self.embed_tokens = nn.Embedding(self.embed_dim, config.hidden_size)
self.embed_tokens_dropout = nn.Dropout(config.emb_dropout)
self.metadata_conditioning = metadata_conditioning
self.audio_conditioning = audio_conditioning
if not metadata_conditioning:
self.start_token = nn.Parameter(torch.empty((1, config.hidden_size)))
self.pos_emb = JukeboxPositionalEmbedding(self.n_ctx, config.hidden_size)
self.pos_emb_dropout = nn.Dropout(config.emb_dropout)
self.transformer = JukeboxLayerStack(config, n_ctx=self.n_ctx)
self.is_encoder = is_encoder
self.encoder_len = config.nb_relevant_lyric_tokens
if config.merged_decoder:
# Merged piped model uses this setup
self.add_cond_after_transformer = False
self.share_embed_tokens_fc_proj_out = False
else:
self.add_cond_after_transformer = True
self.share_embed_tokens_fc_proj_out = True
if not is_encoder:
self.fc_proj_out = nn.Linear(config.hidden_size, self.embed_dim, bias=False)
if self.share_embed_tokens_fc_proj_out:
self.fc_proj_out.weight = self.embed_tokens.weight
self.loss = torch.nn.CrossEntropyLoss()
def forward(
self,
tokens,
audio_conditioning=None,
metadata_conditioning=None,
last_encoder_hidden_states=None,
get_preds=False,
get_acts=False,
get_sep_loss=False,
):
"""
Args:
tokens (`torch.tensor`):
Can represent music tokens, lyrics tokens or both, depending on the configuration.
"""
# Preprocess.
batch_size = tokens.shape[0]
with torch.no_grad():
tokens = tokens.view(batch_size, -1).long()
if not self.audio_conditioning:
audio_conditioning = torch.zeros(
(batch_size, 1, self.width),
device=tokens.device,
dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype,
)
target = tokens # Target
hidden_states = self.embed_tokens(tokens)
# Shift by 1, and fill in start token
hidden_states = torch.cat((hidden_states[:, -1:], hidden_states[:, :-1]), dim=1)
if self.metadata_conditioning:
hidden_states[:, 0] = metadata_conditioning.view(batch_size, self.width)
else:
hidden_states[:, 0] = self.start_token
hidden_states = (
self.embed_tokens_dropout(hidden_states) + self.pos_emb_dropout(self.pos_emb()) + audio_conditioning
) # Pos emb and dropout
hidden_states = self.transformer(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states
) # Transformer
if self.add_cond_after_transformer: # Piped doesnt add x_cond
hidden_states = hidden_states + audio_conditioning
activations = hidden_states
if self.is_encoder:
return hidden_states
hidden_states = self.fc_proj_out(hidden_states) # Predictions
loss_fn = nn.CrossEntropyLoss()
if get_sep_loss:
lyric_hidden_states = hidden_states[:, : self.encoder_len].reshape(-1, self.embed_dim)
token_hidden_states = hidden_states[:, self.encoder_len :].reshape(-1, self.embed_dim)
lyric_loss = loss_fn(lyric_hidden_states, target[:, : self.encoder_len].reshape(-1)) / np.log(2.0)
music_token_loss = loss_fn(token_hidden_states, target[:, self.encoder_len :].reshape(-1)) / np.log(2.0)
loss = (lyric_loss, music_token_loss) # Note order! Lyric is first
else:
loss = loss_fn(hidden_states.view(-1, self.embed_dim), target.view(-1)) / np.log(2.0) # Loss
if get_preds:
return loss, hidden_states
elif get_acts:
return loss, activations
else:
return loss, None
def get_emb(self, sample_t, n_samples, tokens, audio_conditioning, metadata_conditioning):
if sample_t == 0:
hidden_states = torch.empty(n_samples, 1, self.width, dtype=self.embed_tokens.weight.dtype).to(
self.embed_tokens.weight.device
)
if self.metadata_conditioning:
hidden_states[:, 0] = metadata_conditioning.view(n_samples, self.width)
else:
hidden_states[:, 0] = self.start_token
else:
hidden_states = self.embed_tokens(tokens)
if audio_conditioning.shape == (n_samples, self.n_ctx, self.width):
cond = audio_conditioning[:, sample_t : sample_t + 1, :]
else:
cond = audio_conditioning
# Pos emb, dropout is identity at eval time
hidden_states = hidden_states + self.pos_emb()[sample_t : sample_t + 1] + cond
return hidden_states, cond
def sample(
self,
n_samples,
audio_conditioning=None,
metadata_conditioning=None,
last_encoder_hidden_states=None,
temp=1.0,
top_k=0,
top_p=0.0,
get_preds=False,
sample_tokens=None,
):
if sample_tokens is None:
sample_tokens = self.n_ctx
if not self.audio_conditioning:
audio_conditioning = torch.zeros(
(n_samples, 1, self.width), dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype
).to(self.fc_proj_out.device)
with torch.no_grad():
sampled_tokens = []
tokens = None
if get_preds:
preds = []
iter = tqdm(range(0, sample_tokens), leave=False)
for sample_t in iter:
iter.set_description(f"Ancestral sampling {sample_tokens} music tokens", refresh=True)
hidden_states, cond = self.get_emb(
sample_t, n_samples, tokens, audio_conditioning, metadata_conditioning
)
hidden_states = self.transformer(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=True
)
if self.add_cond_after_transformer:
hidden_states = hidden_states + cond
hidden_states = self.fc_proj_out(hidden_states) # Predictions
if get_preds:
preds.append(hidden_states.clone())
# Adjust logits
hidden_states = hidden_states / temp
hidden_states = filter_logits(hidden_states, top_k=top_k, top_p=top_p)
# Sample and replace hidden_states
tokens = torch.distributions.Categorical(logits=hidden_states).sample()
sampled_tokens.append(tokens.clone())
del tokens
self.transformer.del_cache()
tokens = torch.cat(sampled_tokens, dim=1)
if get_preds:
preds = torch.cat(preds, dim=1)
if get_preds:
return tokens, preds
else:
return tokens
def split_chunks(self, length, chunk_size):
n_passes = (length + chunk_size - 1) // chunk_size
chunk_sizes = [*[chunk_size] * (n_passes - 1), (length - 1) % chunk_size + 1]
return chunk_sizes
def primed_sample(
self,
n_samples,
lyric_and_music_tokens,
audio_conditioning=None,
metadata_conditioning=None,
last_encoder_hidden_states=None,
temp=1.0,
top_k=0,
top_p=0.0,
get_preds=False,
chunk_size=None,
sample_tokens=None,
):
if sample_tokens is None:
sample_tokens = self.n_ctx
# Preprocess.
batch_size = lyric_and_music_tokens.shape[0]
with torch.no_grad():
lyric_and_music_tokens = lyric_and_music_tokens.view(batch_size, -1).long()
sampled_audio = torch.split(lyric_and_music_tokens, 1, dim=1)
sampled_audio = list(sampled_audio)
if not self.audio_conditioning:
audio_conditioning = torch.zeros(
(n_samples, 1, self.width), dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype
).to(lyric_and_music_tokens.device)
with torch.no_grad():
if get_preds:
preds = []
# Fill up key/value cache for past context by runing forward pass.
# We do so in chunks instead of doing the whole past in one forward pass to reduce max memory usage.
if chunk_size is None:
chunk_size = len(sampled_audio)
chunk_sizes = self.split_chunks(len(sampled_audio), chunk_size)
x_primes = []
start = 0
token = None
for current_chunk_size in tqdm(chunk_sizes, desc="Preparing past key value", leave=False):
sampled_audio_prime, conds_prime = [], []
for sample_t in range(start, start + current_chunk_size):
x_prime, cond_prime = self.get_emb(
sample_t, n_samples, token, audio_conditioning, metadata_conditioning
)
token = sampled_audio[sample_t]
sampled_audio_prime.append(x_prime)
conds_prime.append(cond_prime)
start = start + current_chunk_size
x_prime, cond_prime = torch.cat(sampled_audio_prime, dim=1), torch.cat(conds_prime, dim=1)
del sampled_audio_prime
del conds_prime
if not get_preds:
del cond_prime
x_prime = self.transformer(x_prime, last_encoder_hidden_states=last_encoder_hidden_states, sample=True)
if get_preds:
if self.add_cond_after_transformer:
x_prime = x_prime + cond_prime
del cond_prime
x_primes.append(x_prime)
else:
del x_prime
if get_preds:
x_prime = torch.cat(x_primes, dim=1)
x_prime = self.fc_proj_out(x_prime) # Predictions
preds.append(x_prime)
# the input of the encoder and decoder can be merged into (lyrics, music tokens)
input_tokens = sampled_audio[-1]
itererator = tqdm(
range(len(sampled_audio), sample_tokens),
desc=f"Sampling {len(range(len(sampled_audio), sample_tokens))} music tokens",
leave=False,
)
for sample_t in itererator:
hidden_states, cond = self.get_emb(
sample_t, n_samples, input_tokens, audio_conditioning, metadata_conditioning
)
hidden_states = self.transformer(
hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=True
)
if self.add_cond_after_transformer:
hidden_states = hidden_states + cond
hidden_states = self.fc_proj_out(hidden_states) # Predictions
if get_preds:
preds.append(hidden_states)
# Adjust logits
hidden_states = hidden_states / temp
hidden_states = filter_logits(hidden_states, top_k=top_k, top_p=top_p)
# only music tokens are sampled
music_tokens = torch.distributions.Categorical(logits=hidden_states).sample()
sampled_audio.append(music_tokens.clone())
input_tokens = music_tokens
del input_tokens, music_tokens
self.transformer.del_cache()
music_tokens = torch.cat(sampled_audio, dim=1)
if get_preds:
preds = torch.cat(preds, dim=1)
if get_preds:
return music_tokens, preds
else:
return music_tokens
class JukeboxMusicTokenConditioner(nn.Module):
"""
The `JukeboxMusicTokenConditioner` takes music tokens as an input (coresponding to the codes of the VQVAE's
codebook) and upsamples it using a single layer of decoder convolution block (the same is used in the VQVAE).
"""
def __init__(self, config, level):
super().__init__()
self.embed_tokens = nn.Embedding(config.music_vocab_size, config.hidden_size)
config.embed_dim = config.music_vocab_size # setting correct argument for the `JukeboxDecoder`
self.upsampler = JukeboxDecoderConvBock(
config,
config.hidden_size,
config.res_conv_width,
config.res_conv_depth,
config.res_downs_t[level],
config.res_strides_t[level],
reverse_dilation=False,
)
self.layer_norm = JukeboxLayerNorm(config.hidden_size)
def forward(self, music_tokens, raw_audio_conditionning=None):
"""
Args:
music_tokens (`torch.LongTensor`):
Music tokens form the uper level in range(nb_discrete_codes)
raw_audio_conditionning (`torch.LongTensor`, *optional*):
Audio used when primed sampling, raw audio information that conditions the generation
"""
if raw_audio_conditionning is None:
raw_audio_conditionning = 0.0
# Embed music_tokens
music_tokens = music_tokens.long()
hidden_states = self.embed_tokens(music_tokens)
hidden_states = hidden_states + raw_audio_conditionning
# Run conditioner
hidden_states = hidden_states.permute(0, 2, 1)
hidden_states = self.upsampler(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1)
hidden_states = self.layer_norm(hidden_states)
return hidden_states
class JukeboxRangeEmbedding(nn.Module):
"""
The `JukeboxRangeEmbedding` interpolate the given [pos_start, pos_end] to obtain an equivalent of time positional
embedding of length `n_ctx`.
Binning process : For each pos in position tensor, find its bin [start,end) mapped to [0,1,...,bins-1] [start,end)
-> [0,1) -> [0, bins) -> floor -> [0,...,bins-1] NOTE: Open ended interval on right, so start <= pos < end, not <=
end
"""
def __init__(self, n_time, embed_dim, range, out_width, clamp=False):
super().__init__()
self.n_time = n_time
self.embed_dim = embed_dim
self.emb = nn.Embedding(embed_dim, out_width)
self.pos_min, self.pos_max = range
self.clamp = clamp
def forward(self, pos_start, pos_end=None):
# Check if [pos_start,pos_end] in [pos_min, pos_max)
if not len(pos_start.shape) == 2:
raise TypeError(f"Expected shape with 2 dims, got {pos_start.shape}")
if not (self.pos_min <= pos_start).all() and (pos_start < self.pos_max).all():
raise TypeError(f"Range is [{self.pos_min},{self.pos_max}), got {pos_start}")
pos_start = pos_start.float()
if pos_end is not None:
if self.clamp:
pos_end = pos_end.clamp(self.pos_min, self.pos_max)
pos_end = pos_end.float()
# Interpolate so that [pos_start, ..., pos_end] <-> position tensor of length n_ctx
n_time = self.n_time
if n_time != 1:
interpolation = (
torch.arange(0, n_time, dtype=torch.float, device=pos_start.device).view(1, n_time) / n_time
)
position = pos_start + (pos_end - pos_start) * interpolation
else:
position = pos_start
# Bin each value to bins_
# [0,1) -> [0,1..,embed_dim) -> [0,1...,embed_dim-1
normalised_position = (position - self.pos_min) / (self.pos_max - self.pos_min)
bins_ = (self.embed_dim * normalised_position).floor().long().detach()
return self.emb(bins_)
class JukeboxLabelConditioner(nn.Module):
def __init__(self, config, include_time_signal):
super().__init__()
embed_dim = config.hidden_size
timing_dims = config.timing_dims
sampling_rate = config.sampling_rate
nb_genres, nb_artists = config.metadata_dims
music_tokens_shape = config.n_ctx
self.max_nb_genres = config.max_nb_genres
self.bow_genre_emb = nn.Embedding(nb_genres, embed_dim)
self.artist_emb = nn.Embedding(nb_artists, embed_dim)
self.include_time_signal = include_time_signal
if self.include_time_signal:
total_length_range = (config.min_duration * sampling_rate, config.max_duration * sampling_rate)
absolute_pos_range = (0.0, config.max_duration * sampling_rate)
relative_pos_range = (0.0, 1.0)
self.total_length_emb = JukeboxRangeEmbedding(1, timing_dims, total_length_range, embed_dim)
self.absolute_pos_emb = JukeboxRangeEmbedding(
music_tokens_shape, timing_dims, absolute_pos_range, embed_dim
)
self.relative_pos_emb = JukeboxRangeEmbedding(
music_tokens_shape, timing_dims, relative_pos_range, embed_dim, clamp=True
)
def forward(self, metadata):
total_length = metadata[:, 0:1]
offset = metadata[:, 1:2]
length = metadata[:, 2:3]
artist = metadata[:, 3:4]
genre = metadata[:, 4:]
# Start embedding of length 1
artist_emb = self.artist_emb(artist)
# Empty genre slots are denoted by -1. We mask these out.
mask = (genre >= 0).float().unsqueeze(2)
genre_emb = (self.bow_genre_emb(genre.clamp(0)) * mask).sum(dim=1, keepdim=True)
start_emb = genre_emb + artist_emb
# Pos embedding of length n_ctx
if self.include_time_signal:
start, end = offset, offset + length
total_length = total_length.float()
start = start.float()
end = end.float()
pos_emb = (
self.total_length_emb(total_length)
+ self.absolute_pos_emb(start, end)
+ self.relative_pos_emb(start / total_length, end / total_length)
)
else:
pos_emb = None
return start_emb, pos_emb
class JukeboxPrior(PreTrainedModel):
"""
The JukeboxPrior class, which is a wrapper around the various conditioning and the transformer. JukeboxPrior can be
seen as language models trained on music. They model the next `music token` prediction task. If a (lyric) `encoderù
is defined, it also models the `next character` prediction on the lyrics. Can be conditionned on timing, artist,
genre, lyrics and codes from lower-levels Priors.
Args:
config (`JukeboxPriorConfig`):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
level (`int`, *optional*):
Current level of the Prior. Should be in range `[0,nb_priors]`.
nb_priors (`int`, *optional*, defaults to 3):
Total number of priors.
vqvae_encoder (`Callable`, *optional*):
Encoding method of the VQVAE encoder used in the forward pass of the model. Passing functions instead of
the vqvae module to avoid getting the parameters.
vqvae_decoder (`Callable`, *optional*):
Decoding method of the VQVAE decoder used in the forward pass of the model. Passing functions instead of
the vqvae module to avoid getting the parameters.
"""
config_class = JukeboxPriorConfig
def _init_weights(self, module):
init_scale = self.config.init_scale
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02 * init_scale)
elif isinstance(module, JukeboxConv1D):
if self.config.zero_out:
module.weight.data.zero_()
else:
module.weight.data.normal_(mean=0.0, std=0.02 * init_scale)
elif isinstance(module, JukeboxPositionalEmbedding):
module.pos_emb.data.normal_(mean=0.0, std=0.01 * init_scale)
elif isinstance(module, JukeboxRangeEmbedding):
module.emb.weight.data.normal_(mean=0.0, std=0.01 * init_scale)
elif isinstance(module, JukeboxConditionalAutoregressive) and hasattr(module, "lm_head"):
module.lm_head.weight.data.normal_(mean=0.0, std=0.02 * init_scale)
elif isinstance(module, JukeboxConditionalAutoregressive) and hasattr(module, "start_token"):
module.start_token.data.normal_(mean=0.0, std=0.01 * init_scale)
elif isinstance(module, JukeboxResConv1DBlock) and self.config.zero_out:
module.conv1d_2.weigth.data.zero_()
module.conv1d_2.bias.data.zero_()
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def __init__(self, config: JukeboxPriorConfig, level=None, nb_priors=3, vqvae_encoder=None, vqvae_decoder=None):
super().__init__(config)
# Passing functions instead of the vqvae module to avoid getting params, only used in the
# forward loop
self.vqvae_encoder = vqvae_encoder
self.vqvae_decoder = vqvae_decoder
self.levels = nb_priors
self.level = level if level is not None else config.level
self.base_model_prefix = f"priors.{self.level}"
self.n_ctx = config.n_ctx
self.lyric_conditioning = config.nb_relevant_lyric_tokens > 0
self.nb_relevant_lyric_tokens = config.nb_relevant_lyric_tokens
self.encoder_loss_fraction = config.encoder_loss_fraction
# Audio conditioning : conditioning on music tokens (either from audio or from previous levels or both)
self.audio_conditioning = self.level != 0
self.cond_level = self.level - 1
if self.audio_conditioning:
self.conditioner_blocks = JukeboxMusicTokenConditioner(config, self.level)
# metadata conditioning : contioning on timing, genres, and artist
self.metadata_conditioning = config.metadata_conditioning
if self.metadata_conditioning:
self.metadata_embedding = JukeboxLabelConditioner(config, include_time_signal=not self.audio_conditioning)
# define encoder-decoder or encoder and decoder
self.is_encoder_decoder = config.is_encoder_decoder
if config.is_encoder_decoder:
# encoder-decoder transformer
self.input_shapes = [config.nb_relevant_lyric_tokens, config.n_ctx]
self.embed_dim_shift = [0, config.lyric_vocab_size]
self.width = config.hidden_size
self.nb_relevant_lyric_tokens = config.nb_relevant_lyric_tokens
self.prior = JukeboxConditionalAutoregressive(
config,
n_ctx=config.nb_relevant_lyric_tokens + config.n_ctx,
embed_dim=config.lyric_vocab_size + config.music_vocab_size,
audio_conditioning=(self.audio_conditioning or self.metadata_conditioning),
metadata_conditioning=True,
)
else:
# Separate encoder-decoder transformer
encoder_config = config.encoder_config
if self.nb_relevant_lyric_tokens != 0 and self.lyric_conditioning:
self.lyric_acts_width = encoder_config.hidden_size
self.encoder_width = config.hidden_size
self.encoder_dim = config.lyric_vocab_size
self.encoder = JukeboxConditionalAutoregressive(
encoder_config,
n_ctx=self.nb_relevant_lyric_tokens,
embed_dim=self.encoder_dim,
audio_conditioning=False,
metadata_conditioning=False,
is_encoder=True,
)
self.encoder.proj_in = JukeboxConv1D(encoder_config.hidden_size, config.hidden_size)
self.encoder.final_layer_norm = JukeboxLayerNorm(config.hidden_size)
self.encoder.lm_head = nn.Linear(config.hidden_size, config.lyric_vocab_size, bias=False)
else:
self.nb_relevant_lyric_tokens = 0
# decoder model on the tokens
self.prior = JukeboxConditionalAutoregressive(
config,
audio_conditioning=(self.audio_conditioning or self.metadata_conditioning),
metadata_conditioning=self.metadata_conditioning,
)
self.next_token_prediction_loss_dims = config.n_ctx
self.total_loss_dims = self.nb_relevant_lyric_tokens + self.next_token_prediction_loss_dims
self.downsamples = [stride**down for stride, down in zip(config.res_strides_t, config.res_downs_t)]
self.cond_downsample = self.downsamples[self.level] if self.level != 0 else None
self.raw_to_tokens = np.prod(self.downsamples[: nb_priors - self.level])
self.sample_length = self.n_ctx * self.raw_to_tokens
logger.info(
f"Level:{self.level}, Cond downsample:{self.cond_downsample}, Raw to tokens:{self.raw_to_tokens}, Sample"
f" length:{self.sample_length}"
)
def get_metadata(self, labels, start, total_length, offset, get_indices=False):
metadata = labels.clone()
metadata[:, 0] = total_length
# Set sample_length to match this level
metadata[:, 2] = int(self.sample_length)
# Set offset
metadata[:, 1:2] = int(offset * self.raw_to_tokens) + int(start * self.raw_to_tokens)
# here since metadata has the full token_list, we just need to selected the ones that are relevant
# Set lyric tokens
metadata, indices = self.set_metadata_lyric_tokens(metadata)
if get_indices:
return metadata, indices
else:
return metadata
def set_metadata_lyric_tokens(self, labels):
"""
Processes the full labels to only retreive the relevant lyric tokens and keep the metadata conditioning tokens.
"""
if self.nb_relevant_lyric_tokens > 0:
tokens_list = torch.zeros(
(labels.shape[0], self.nb_relevant_lyric_tokens), dtype=torch.long, device=labels.device
)
indices_list = [] # whats the index of each current character in original array
for idx in range(labels.shape[0]):
full_tokens = labels.clone()[:, 4 + self.metadata_embedding.max_nb_genres :]
total_length, offset, duration = labels[idx, 0], labels[idx, 1], labels[idx, 2]
tokens, indices = get_relevant_lyric_tokens(
full_tokens, self.nb_relevant_lyric_tokens, total_length, offset, duration
)
tokens_list[idx, :] = tokens
indices_list.append(indices)
return (
torch.cat((labels[:, : 4 + self.metadata_embedding.max_nb_genres], tokens_list), dim=-1),
indices_list,
)
else:
return labels, None
def get_music_tokens_conds(self, music_tokens, start, end):
"""
Extracts current level's conditioning music tokens.
"""
if self.level != 0:
music_tokens_cond = music_tokens[self.level - 1]
music_tokens = music_tokens_cond[:, start // self.cond_downsample : end // self.cond_downsample]
missing_cond_len = self.n_ctx // self.cond_downsample - music_tokens_cond[-1].shape[-1]
if missing_cond_len > 0:
init_cond = torch.zeros(1, missing_cond_len).to(music_tokens_cond.device)
music_tokens_cond = torch.cat((music_tokens_cond, init_cond), dim=-1).long()
music_tokens_conds = [music_tokens_cond]
else:
music_tokens_conds = None
return music_tokens_conds
def prior_preprocess(self, tokens, conds):
"""
Shifts the input tokens to account for the dictionary merge. The embed_dim_shift give by how much the music
tokens should be shifted by. It is equal to `lyric_vocab_size`.
"""
batch_size = tokens[0].shape[0]
for i in range(len(tokens)):
tokens[i] = (tokens[i] + int(self.embed_dim_shift[i])).view(batch_size, -1)
for i in range(len(conds)):
if conds[i] is None:
conds[i] = torch.zeros(
(batch_size, self.input_shapes[i], self.width), dtype=tokens[0].dtype, device=tokens[0].device
)
return torch.cat(tokens, dim=1), torch.cat(conds, dim=1)
def prior_postprocess(self, tokens):
"""
Shifts back the input tokens if the model uses an encoder decoder architecture. As the embedding layer is
shared, `prior_embed_dim_shift` shifts the music token ids by `lyric_vocab_size`. Only returns the music
tokens.
"""
batch_size = tokens.shape[0]
dims = (self.input_shapes[0], tokens.shape[1] - self.input_shapes[0])
tokens = list(torch.split(tokens, dims, dim=1))
# Some of the input tokens might be shifted to take into account the voccabulary fusion
for i in range(len(tokens)):
bins_shift = int(self.embed_dim_shift[i])
tokens[i] = (tokens[i] - bins_shift).view(batch_size, -1)
tokens[i] = torch.clamp(tokens[i], min=0)
# If not masking loss, model may have generated lyric/midi tokens which are now shifted <0 by bin_shift
return tokens[-1]
def embed_tokens(self, music_tokens_conds):
"""
Embeds the upper level music tokens and upsamples them to provide as audio conditioning.
"""
music_tokens_conds = music_tokens_conds[: self.cond_level + 1]
audio_conditioning = None
for music_tokens_cond, conditioner_block in reversed(list(zip(music_tokens_conds, [self.conditioner_blocks]))):
audio_conditioning = conditioner_block(music_tokens_cond, audio_conditioning)
return audio_conditioning
def encode(self, hidden_states, start_level=None, end_level=None, bs_chunks=1):
"""
Encodes the hidden states (raw audio) using the VQVAE's encoder. Returns latent_states.
"""
if start_level is None:
start_level = self.level
if end_level is None:
end_level = self.levels
# Get latents
with torch.no_grad():
latent_states = self.vqvae_encoder(
hidden_states, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks
)
return latent_states
def decode(self, music_tokens, start_level=None, end_level=None, bs_chunks=1):
"""
Usamples the sequence of codebook vectors to a raw audio.
"""
if start_level is None:
start_level = self.level
if end_level is None:
end_level = self.levels
with torch.no_grad():
output = self.vqvae_decoder(
music_tokens, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks
)
return output
def get_cond(self, music_tokens_conds, metadata):
"""
Converts the input tokens to input_embeddings. Splits the lyrics form the rest of the metadata. Lyric tokens
can be None.
"""
if metadata is not None:
n_labels = metadata.shape[1] - self.nb_relevant_lyric_tokens
metadata, lyric_tokens = metadata[:, :n_labels], metadata[:, n_labels:]
else:
metadata, lyric_tokens = None, None
metadata_conditioning, metadata_pos = (
self.metadata_embedding(metadata) if self.metadata_conditioning else (None, None)
)
audio_conditioning = self.embed_tokens(music_tokens_conds) if self.audio_conditioning else metadata_pos
return audio_conditioning, metadata_conditioning, lyric_tokens
def sample(
self,
n_samples,
music_tokens=None,
music_tokens_conds=None,
metadata=None,
temp=1.0,
top_k=0,
top_p=0.0,
chunk_size=None,
sample_tokens=None,
):
"""
Ancestral/Prime sampling a window of tokens using the provided conditioning and metadatas.
Args:
n_samples (`int`):
Number of samples to generate.
music_tokens (`List[torch.LongTensor]`, *optional*):
Previously gemerated tokens at the current level. Used as context for the generation.
music_tokens_conds (`List[torch.FloatTensor]`, *optional*):
Upper-level music tokens generated by the previous prior model. Is `None` if the generation is not
conditionned on the upper-level tokens.
metadata (`List[torch.LongTensor]`, *optional*):
List containing the metatdata tensor with the artist, genre and the lyric tokens.
temp (`float`, *optional*, defaults to 1.0):
Sampling temperature.
top_k (`int`, *optional*, defaults to 0):
Top k probabilities used for filtering.
top_p (`float`, *optional*, defaults to 0.0):
Top p probabilities used for filtering.
chunk_size (`int`, *optional*):
Size of the chunks used to prepare the cache of the transformer.
sample_tokens (`int`, *optional*):
Number of tokens to sample.
"""
no_past_context = music_tokens is None or music_tokens.shape[1] == 0
name = {True: "Ancestral", False: "Primed"}[no_past_context]
logger.info(f"{name} sampling {n_samples} samples with temp={temp}, top_k={top_k}, top_p={top_p}")
with torch.no_grad():
# Currently audio_conditioning only uses immediately above layer
audio_conditioning, metadata_conditioning, lyric_tokens = self.get_cond(music_tokens_conds, metadata)
if self.is_encoder_decoder:
if no_past_context: # the prime_sample function will be used with music_tokens set to None
lyric_and_music_tokens, audio_conditioning = self.prior_preprocess(
[lyric_tokens], [None, audio_conditioning]
)
else:
lyric_and_music_tokens, audio_conditioning = self.prior_preprocess(
[lyric_tokens, music_tokens], [None, audio_conditioning]
)
if sample_tokens is not None:
sample_tokens += self.nb_relevant_lyric_tokens
music_tokens = self.prior.primed_sample(
n_samples,
lyric_and_music_tokens,
audio_conditioning,
metadata_conditioning,
temp=temp,
top_k=top_k,
top_p=top_p,
chunk_size=chunk_size,
sample_tokens=sample_tokens,
)
music_tokens = self.prior_postprocess(music_tokens)
else:
last_encoder_hidden_states = self.get_encoder_states(lyric_tokens, sample=True)
if no_past_context:
music_tokens = self.prior.sample(
n_samples,
audio_conditioning,
metadata_conditioning,
last_encoder_hidden_states,
temp=temp,
top_k=top_k,
top_p=top_p,
sample_tokens=sample_tokens,
)
else:
music_tokens = self.prior.primed_sample(
n_samples,
music_tokens,
audio_conditioning,
metadata_conditioning,
last_encoder_hidden_states,
temp=temp,
top_k=top_k,
top_p=top_p,
chunk_size=chunk_size,
sample_tokens=sample_tokens,
)
return music_tokens
def get_encoder_states(self, lyric_tokens, sample=False):
"""
Retreive the last hidden_states of the lyric encoder that will be attended to by the decoder. Forwards through
the lyric encoder.
"""
if self.nb_relevant_lyric_tokens != 0 and self.lyric_conditioning:
if sample:
self.encoder = self.encoder.to(lyric_tokens.device)
lyric_acts = self.encoder(lyric_tokens, None, None, None)
lyric_acts = self.encoder.proj_in(lyric_acts)
last_encoder_hidden_states = self.encoder.final_layer_norm(lyric_acts)
else:
last_encoder_hidden_states = None
return last_encoder_hidden_states
def get_encoder_loss(self, last_encoder_hidden_states, target_lyrics):
"""
Computes the loss for the lyric encoder: next lyric token prediction.
"""
if self.lyric_conditioning:
last_encoder_hidden_states = self.encoder.lm_head(last_encoder_hidden_states)
encoder_loss = nn.functional.cross_entropy(
last_encoder_hidden_states.view(-1, self.encoder_dim), target_lyrics.view(-1)
) / np.log(2.0)
else:
encoder_loss = torch.tensor(0.0, device=last_encoder_hidden_states.device)
return encoder_loss
def forward_tokens(
self, music_tokens, music_tokens_conds=[], metadata=None, get_preds=False, get_attn_weights=False
):
"""
Applies a forward pass using the conditioning tokens. Different from the classic forward as it does not use the
vqvae's encoding layers.
"""
if get_attn_weights:
self.prior.transformer.set_record_attn(get_attn_weights)
audio_conditioning, metadata_conditioning, lyric_tokens = self.get_cond(music_tokens_conds, metadata)
if self.is_encoder_decoder: # the preprocess returns the full tokens (Lyrics and Music tokens), shifted
tokens, audio_conditioning = self.prior_preprocess(
[lyric_tokens, music_tokens], [None, audio_conditioning]
)
(encoder_loss, next_token_prediction_loss), preds = self.prior(
tokens, audio_conditioning, metadata_conditioning, get_sep_loss=True, get_preds=get_preds
)
else:
last_encoder_hidden_states = self.get_encoder_states(lyric_tokens)
encoder_loss = self.get_encoder_loss(last_encoder_hidden_states, lyric_tokens)
next_token_prediction_loss, preds = self.prior(
music_tokens,
audio_conditioning,
metadata_conditioning,
last_encoder_hidden_states,
get_preds=get_preds,
)
loss = self.encoder_loss_fraction * encoder_loss * self.nb_relevant_lyric_tokens / self.total_loss_dims
loss += next_token_prediction_loss * self.next_token_prediction_loss_dims / self.total_loss_dims
metrics = {
"bpd": next_token_prediction_loss.clone().detach(),
"encoder_loss": encoder_loss.clone().detach(),
"next_token_prediction_loss": next_token_prediction_loss.clone().detach(),
}
if get_preds:
metrics["preds"] = preds.clone().detach()
if get_attn_weights:
saved_attn_weights = self.prior.transformer.saved_attn_weights
self.prior.transformer.set_record_attn(False)
return saved_attn_weights
else:
return loss, metrics
def forward(
self,
hidden_states: torch.Tensor,
metadata: Optional[List[torch.LongTensor]],
decode: Optional[bool] = False,
get_preds: Optional[bool] = False,
) -> List[torch.Tensor]:
"""
Encode the hidden states using the `vqvae` encoder, and then predicts the next token in the `forward_tokens`
function. The loss is the sum of the `encoder` loss and the `decoder` loss.
Args:
hidden_states (`torch.Tensor`):
Hidden states which should be raw audio
metadata (`List[torch.LongTensor]`, *optional*):
List containing the metadata conditioning tensorwith the lyric and the metadata tokens.
decode (`bool`, *optional*, defaults to `False`):
Whether or not to decode the encoded to tokens.
get_preds (`bool`, *optional*, defaults to `False`):
Whether or not to return the actual predicitons of the model.
"""
batch_size = hidden_states.shape[0]
music_tokens, *music_tokens_conds = self.encode(hidden_states, bs_chunks=batch_size)
loss, metrics = self.forward_tokens(
music_tokens=music_tokens,
music_tokens_conds=music_tokens_conds,
metadata=metadata,
get_preds=get_preds,
)
if decode:
dequantised_states = self.decode([music_tokens, *music_tokens_conds])
else:
dequantised_states = None
return dequantised_states, loss, metrics
class JukeboxPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = JukeboxConfig
base_model_prefix = "jukebox"
supports_gradient_checkpointing = False
def _init_weights(self, module):
if isinstance(module, JukeboxPrior) or isinstance(module, JukeboxVQVAE):
module.apply(module._init_weights)
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
JUKEBOX_SAMPLING_INPUT_DOCSTRING = r"""
labels (`List[torch.LongTensor]` of length `n_sample`, and shape `(self.levels, self.config.max_nb_genre + lyric_sequence_length)` :
List of metadata such as `artist_id`, `genre_id` and the full list of lyric tokens which are used to
condition the generation.
sampling_kwargs (`Dict[Any]`):
Various additional sampling arguments that are used by the `_sample` function. A detail list of the
arguments can bee seen in the [`_sample`] function documentation.
"""
@add_start_docstrings(
"""The bare JUKEBOX Model used for music generation. 4 sampling techniques are supported : `primed_sample`, `upsample`,
`continue_sample` and `ancestral_sample`. It does not have a `forward` method as the training is not end to end. If
you want to fine-tune the model, it is recommended to use the `JukeboxPrior` class and train each prior
individually.
""",
JUKEBOX_START_DOCSTRING,
)
class JukeboxModel(JukeboxPreTrainedModel):
_no_split_modules = ["JukeboxBlock"]
def __init__(self, config):
super().__init__(config)
vqvae_config = config.vqvae_config
self.vqvae = JukeboxVQVAE(vqvae_config)
self.set_shared_params(config)
self.priors = nn.ModuleList(
[JukeboxPrior(config.prior_configs[level], level) for level in range(config.nb_priors)]
)
def set_shared_params(self, model_config):
"""
Initialises the parameters that are shared. This has to be done here because the list of `JukeboxPriorConfig`
is nest, and is thus unreachable in the `from_dict` function
"""
for config in model_config.prior_configs:
config.sampling_rate = model_config.sampling_rate
config.timing_dims = model_config.timing_dims
config.min_duration = model_config.min_duration
config.max_duration = model_config.max_duration
config.max_nb_genres = model_config.max_nb_genres
config.metadata_conditioning = model_config.metadata_conditioning
def decode(self, music_tokens, start_level=0, end_level=None, bs_chunks=1):
return self.vqvae.decode(music_tokens, start_level, end_level, bs_chunks)
def encode(self, input_audio, start_level=0, end_level=None, bs_chunks=1):
return self.vqvae.encode(input_audio, start_level, end_level, bs_chunks)
def split_batch(self, obj, n_samples, split_size):
n_passes = (n_samples + split_size - 1) // split_size
if isinstance(obj, torch.Tensor):
return torch.split(obj, split_size, dim=0)
elif isinstance(obj, list):
return list(zip(*[torch.split(item, split_size, dim=0) for item in obj]))
elif obj is None:
return [None] * n_passes
else:
raise TypeError("Unknown input type")
# Sample a partial window of length<n_ctx with tokens_to_sample new tokens on level=level
def sample_partial_window(
self, music_tokens, labels, offset, sampling_kwargs, level, tokens_to_sample, max_batch_size
):
prior = self.priors[level]
sampled_tokens = music_tokens[level]
n_ctx = prior.n_ctx
nb_sampled_tokens = sampled_tokens.shape[1]
if nb_sampled_tokens < n_ctx - tokens_to_sample:
sampling_kwargs["sample_tokens"] = nb_sampled_tokens + tokens_to_sample
start = 0
else:
sampling_kwargs["sample_tokens"] = n_ctx
start = nb_sampled_tokens - n_ctx + tokens_to_sample
return self.sample_single_window(music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size)
# Sample a single window of length=n_ctx at position=start on level=level
def sample_single_window(self, music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size):
prior = self.priors[level]
n_samples = music_tokens[0].shape[0]
n_ctx = prior.n_ctx
end = start + n_ctx
# get music_tokens already sampled at current level
previous_sampled_tokens = music_tokens[level][:, start:end]
sample_tokens = sampling_kwargs.get("sample_tokens", None)
if "sample_tokens" in sampling_kwargs:
sample_tokens = end - start
conditioning_tokens = previous_sampled_tokens.shape[1]
new_tokens = sample_tokens - previous_sampled_tokens.shape[1]
logger.info(
f"Sampling {sample_tokens} tokens for [{start},{start+sample_tokens}]. Conditioning on"
f" {conditioning_tokens} tokens"
)
if new_tokens <= 0:
# Nothing new to sample
return music_tokens
# get music_tokens_conds from level above
music_tokens_conds = prior.get_music_tokens_conds(music_tokens, start, end)
# if there are no levels above should return None!
# set metadata offset, sample_length and lyrics tokens
metadata = prior.get_metadata(labels, start, self.total_length, offset)
music_tokens_list = self.split_batch(previous_sampled_tokens, n_samples, max_batch_size)
music_tokens_conds_list = self.split_batch(music_tokens_conds, n_samples, max_batch_size)
metadata_list = self.split_batch(metadata, n_samples, max_batch_size)
tokens = []
iterator = tqdm(zip(music_tokens_list, music_tokens_conds_list, metadata_list), leave=False)
for music_tokens_i, music_tokens_conds_i, metadata_i in iterator:
name = ["Ancestral", "Primed"][music_tokens_i.shape[1] == 0]
iterator.set_description(
f"[prior level {level}] {name} Sampling {sample_tokens} tokens out of"
f" {self.total_length//prior.raw_to_tokens}",
refresh=True,
)
tokens_i = prior.sample(
n_samples=music_tokens_i.shape[0],
music_tokens=music_tokens_i,
music_tokens_conds=music_tokens_conds_i,
metadata=metadata_i,
**sampling_kwargs,
)
tokens.append(tokens_i)
sampled_tokens = torch.cat(tokens, dim=0)
# Update music_tokens with new sample
music_tokens_new = sampled_tokens[:, -new_tokens:]
music_tokens[level] = torch.cat([music_tokens[level], music_tokens_new], dim=1)
return music_tokens
# Sample total_length tokens at level=level with hop_length=hop_length
def sample_level(
self, music_tokens, labels, offset, sampling_kwargs, level, total_length, hop_length, max_batch_size
):
if total_length >= self.priors[level].n_ctx:
iterator = get_starts(total_length, self.priors[level].n_ctx, hop_length)
for start in iterator:
music_tokens = self.sample_single_window(
music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size
)
else:
music_tokens = self.sample_partial_window(
music_tokens, labels, offset, sampling_kwargs, level, total_length, max_batch_size
)
return music_tokens
@torch.no_grad()
def _sample(
self,
music_tokens,
labels,
sample_levels,
metas=None,
chunk_size=32,
sampling_temperature=0.98,
lower_batch_size=16,
max_batch_size=16,
sample_length_in_seconds=24,
compute_alignments=False,
sample_tokens=None,
offset=0,
save_results=True,
sample_length=None,
) -> List[torch.LongTensor]:
"""
Core sampling function used to generate music tokens. Iterates over the provided list of levels, while saving
the generated raw audio at each step.
Args:
music_tokens (`List[torch.LongTensor]`):
A sequence of music tokens of length `self.levels` which will be used as context to continue the
sampling process. Should have `self.levels` tensors, each corresponding to the generation at a certain
level.
labels (`List[torch.LongTensor]`):
List of length `n_sample`, and shape `(self.levels, 4 + self.config.max_nb_genre +
lyric_sequence_length)` metadata such as `artist_id`, `genre_id` and the full list of lyric tokens
which are used to condition the generation.
sample_levels (`List[int]`):
List of the desired levels at which the sampling will be done. A level is equivalent to the index of
the prior in the list of priors
metas (`List[Any]`, *optional*):
Metadatas used to generate the `labels`
chunk_size (`int`, *optional*, defaults to 32):
Size of a chunk of audio, used to fill up the memory in chuncks to prevent OOM erros. Bigger chunks
means faster memory filling but more consumption.
sampling_temperature (`float`, *optional*, defaults to 0.98):
Temperature used to ajust the randomness of the sampling.
lower_batch_size (`int`, *optional*, defaults to 16):
Maximum batch size for the lower level priors
max_batch_size (`int`, *optional*, defaults to 16):
Maximum batch size for the top level priors
sample_length_in_seconds (`int`, *optional*, defaults to 24):
Desired length of the generation in seconds
compute_alignments (`bool`, *optional*, defaults to `False`):
Whether or not to compute the alignment between the lyrics and the audio using the top_prior
sample_tokens (`int`, *optional*):
Precise number of tokens that should be sampled at each level. This is mostly useful for running dummy
experiments
offset (`int`, *optional*, defaults to 0):
Audio offset used as conditioning, corresponds to the starting sample in the music. If the offset is
greater than 0, the lyrics will be shifted take that intoaccount
save_results (`bool`, *optional*, defaults to `True`):
Whether or not to save the intermediate results. If `True`, will generate a folder named with the start
time.
sample_length (`int`, *optional*):
Desired length of the generation in samples.
Returns: torch.Tensor
Example:
```python
>>> from transformers import AutoTokenizer, JukeboxModel, set_seed
>>> import torch
>>> metas = dict(artist="Zac Brown Band", genres="Country", lyrics="I met a traveller from an antique land")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/jukebox-1b-lyrics")
>>> model = JukeboxModel.from_pretrained("openai/jukebox-1b-lyrics", min_duration=0).eval()
>>> labels = tokenizer(**metas)["input_ids"]
>>> set_seed(0)
>>> zs = [torch.zeros(1, 0, dtype=torch.long) for _ in range(3)]
>>> zs = model._sample(zs, labels, [0], sample_length=40 * model.priors[0].raw_to_tokens, save_results=False)
>>> zs[0]
tensor([[1853, 1369, 1150, 1869, 1379, 1789, 519, 710, 1306, 1100, 1229, 519,
353, 1306, 1379, 1053, 519, 653, 1631, 1467, 1229, 1229, 10, 1647,
1254, 1229, 1306, 1528, 1789, 216, 1631, 1434, 653, 475, 1150, 1528,
1804, 541, 1804, 1434]])
```
"""
top_prior = self.priors[0]
if sample_length is not None:
total_length = sample_length
else:
total_length = (
int(sample_length_in_seconds * self.config.sampling_rate) // top_prior.raw_to_tokens
) * top_prior.raw_to_tokens
if sample_levels is None:
sample_levels = range(len(self.priors))
# total length of the signal, might be bit different from the actual generated length
self.total_length = total_length
for level in sample_levels:
sampling_kwargs = {
"temp": 0.99 if level == len(self.priors) - 1 else sampling_temperature,
"chunk_size": chunk_size,
"sample_tokens": sample_tokens,
}
# Set correct total_length, hop_length, labels and sampling_kwargs for level
total_token_to_sample = total_length // self.priors[level].raw_to_tokens
hop_length = int(self.config.hop_fraction[level] * self.priors[level].n_ctx)
max_batch_size = lower_batch_size if level != sample_levels else max_batch_size
music_tokens = self.sample_level(
music_tokens,
labels[level],
offset,
sampling_kwargs,
level,
total_token_to_sample,
hop_length,
max_batch_size,
)
if save_results:
self.vqvae.to(music_tokens[level].device)
# Decode sample
with torch.no_grad():
start_level = len(self.priors) - level - 1 # vqvae levels are reversed
raw_audio = self.vqvae.decode(
music_tokens[: level + 1], start_level=start_level, bs_chunks=music_tokens[level].shape[0]
)
logdir = f"jukebox/level_{level}"
if not os.path.exists(logdir):
os.makedirs(logdir)
save_temp_audio(logdir, level, metas=metas, aud=raw_audio.float())
if compute_alignments and self.priors[0] is not None and self.priors[0].nb_relevant_lyric_tokens > 0:
with torch.no_grad():
alignments = get_alignment(music_tokens, labels[0], self.priors[0], self.config)
torch.save({"alignments": alignments}, f"{logdir}/lyric_alignments.pt")
return music_tokens
@add_start_docstrings(
"""
Generates music tokens based on the provided `labels. Will start at the desired prior level and automatically
upsample the sequence. If you want to create the audio, you should call `model.decode(tokens)`, which will use
the VQ-VAE decoder to convert the music tokens to raw audio.
Args:
labels (`List[torch.LongTensor]`) :
List of length `n_sample`, and shape `(self.levels, 4 + self.config.max_nb_genre +
lyric_sequence_length)` metadata such as `artist_id`, `genre_id` and the full list of lyric tokens
which are used to condition the generation.
n_samples (`int`, *optional*, default to 1) :
Number of samples to be generated in parallel.
""",
)
def ancestral_sample(self, labels, n_samples=1, **sampling_kwargs) -> List[torch.LongTensor]:
"""
Example:
```python
>>> from transformers import AutoTokenizer, JukeboxModel, set_seed
>>> model = JukeboxModel.from_pretrained("openai/jukebox-1b-lyrics", min_duration=0).eval()
>>> tokenizer = AutoTokenizer.from_pretrained("openai/jukebox-1b-lyrics")
>>> lyrics = "Hey, are you awake? Can you talk to me?"
>>> artist = "Zac Brown Band"
>>> genre = "Country"
>>> metas = tokenizer(artist=artist, genres=genre, lyrics=lyrics)
>>> set_seed(0)
>>> music_tokens = model.ancestral_sample(metas.input_ids, sample_length=400)
>>> with torch.no_grad():
... model.decode(music_tokens)[:, :10].squeeze(-1)
tensor([[-0.0219, -0.0679, -0.1050, -0.1203, -0.1271, -0.0936, -0.0396, -0.0405,
-0.0818, -0.0697]])
```
"""
sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors))))
music_tokens = [
torch.zeros(n_samples, 0, dtype=torch.long, device=labels[0].device) for _ in range(len(self.priors))
]
music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs)
return music_tokens
@add_start_docstrings(
"""Generates a continuation of the previously generated tokens.
Args:
music_tokens (`List[torch.LongTensor]` of length `self.levels` ) :
A sequence of music tokens which will be used as context to continue the sampling process. Should have
`self.levels` tensors, each corresponding to the generation at a certain level.
""",
JUKEBOX_SAMPLING_INPUT_DOCSTRING,
)
def continue_sample(self, music_tokens, labels, **sampling_kwargs) -> List[torch.LongTensor]:
sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors))))
music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs)
return music_tokens
@add_start_docstrings(
"""Upsamples a sequence of music tokens using the prior at level `level`.
Args:
music_tokens (`List[torch.LongTensor]` of length `self.levels` ) :
A sequence of music tokens which will be used as context to continue the sampling process. Should have
`self.levels` tensors, each corresponding to the generation at a certain level.
""",
JUKEBOX_SAMPLING_INPUT_DOCSTRING,
)
def upsample(self, music_tokens, labels, **sampling_kwargs) -> List[torch.LongTensor]:
sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors) - 1)))
music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs)
return music_tokens
@add_start_docstrings(
"""Generate a raw audio conditioned on the provided `raw_audio` which is used as conditioning at each of the
generation levels. The audio is encoded to music tokens using the 3 levels of the VQ-VAE. These tokens are
used: as conditioning for each level, which means that no ancestral sampling is required.
Args:
raw_audio (`List[torch.Tensor]` of length `n_samples` ) :
A list of raw audio that will be used as conditioning information for each samples that will be
generated.
""",
JUKEBOX_SAMPLING_INPUT_DOCSTRING,
)
def primed_sample(self, raw_audio, labels, **sampling_kwargs) -> List[torch.LongTensor]:
sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors))))
self.vqvae.to(raw_audio.device).float()
with torch.no_grad():
music_tokens = self.vqvae.encode(
raw_audio, start_level=0, end_level=len(self.priors), bs_chunks=raw_audio.shape[0]
)
music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs)
return music_tokens