300 lines
14 KiB
Python
300 lines
14 KiB
Python
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import warnings
|
||
|
from dataclasses import dataclass, field
|
||
|
from typing import Optional, Tuple
|
||
|
|
||
|
from .training_args import TrainingArguments
|
||
|
from .utils import cached_property, is_tf_available, logging, requires_backends
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
if is_tf_available():
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from .modeling_tf_utils import keras
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class TFTrainingArguments(TrainingArguments):
|
||
|
"""
|
||
|
TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop
|
||
|
itself**.
|
||
|
|
||
|
Using [`HfArgumentParser`] we can turn this class into
|
||
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
|
||
|
command line.
|
||
|
|
||
|
Parameters:
|
||
|
output_dir (`str`):
|
||
|
The output directory where the model predictions and checkpoints will be written.
|
||
|
overwrite_output_dir (`bool`, *optional*, defaults to `False`):
|
||
|
If `True`, overwrite the content of the output directory. Use this to continue training if `output_dir`
|
||
|
points to a checkpoint directory.
|
||
|
do_train (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to run training or not. This argument is not directly used by [`Trainer`], it's intended to be used
|
||
|
by your training/evaluation scripts instead. See the [example
|
||
|
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
||
|
do_eval (`bool`, *optional*):
|
||
|
Whether to run evaluation on the validation set or not. Will be set to `True` if `evaluation_strategy` is
|
||
|
different from `"no"`. This argument is not directly used by [`Trainer`], it's intended to be used by your
|
||
|
training/evaluation scripts instead. See the [example
|
||
|
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
||
|
do_predict (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to run predictions on the test set or not. This argument is not directly used by [`Trainer`], it's
|
||
|
intended to be used by your training/evaluation scripts instead. See the [example
|
||
|
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
|
||
|
evaluation_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`):
|
||
|
The evaluation strategy to adopt during training. Possible values are:
|
||
|
|
||
|
- `"no"`: No evaluation is done during training.
|
||
|
- `"steps"`: Evaluation is done (and logged) every `eval_steps`.
|
||
|
- `"epoch"`: Evaluation is done at the end of each epoch.
|
||
|
|
||
|
per_device_train_batch_size (`int`, *optional*, defaults to 8):
|
||
|
The batch size per GPU/TPU core/CPU for training.
|
||
|
per_device_eval_batch_size (`int`, *optional*, defaults to 8):
|
||
|
The batch size per GPU/TPU core/CPU for evaluation.
|
||
|
gradient_accumulation_steps (`int`, *optional*, defaults to 1):
|
||
|
Number of updates steps to accumulate the gradients for, before performing a backward/update pass.
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging,
|
||
|
evaluation, save will be conducted every `gradient_accumulation_steps * xxx_step` training examples.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
learning_rate (`float`, *optional*, defaults to 5e-5):
|
||
|
The initial learning rate for Adam.
|
||
|
weight_decay (`float`, *optional*, defaults to 0):
|
||
|
The weight decay to apply (if not zero).
|
||
|
adam_beta1 (`float`, *optional*, defaults to 0.9):
|
||
|
The beta1 hyperparameter for the Adam optimizer.
|
||
|
adam_beta2 (`float`, *optional*, defaults to 0.999):
|
||
|
The beta2 hyperparameter for the Adam optimizer.
|
||
|
adam_epsilon (`float`, *optional*, defaults to 1e-8):
|
||
|
The epsilon hyperparameter for the Adam optimizer.
|
||
|
max_grad_norm (`float`, *optional*, defaults to 1.0):
|
||
|
Maximum gradient norm (for gradient clipping).
|
||
|
num_train_epochs(`float`, *optional*, defaults to 3.0):
|
||
|
Total number of training epochs to perform.
|
||
|
max_steps (`int`, *optional*, defaults to -1):
|
||
|
If set to a positive number, the total number of training steps to perform. Overrides `num_train_epochs`.
|
||
|
For a finite dataset, training is reiterated through the dataset (if all data is exhausted) until
|
||
|
`max_steps` is reached.
|
||
|
warmup_ratio (`float`, *optional*, defaults to 0.0):
|
||
|
Ratio of total training steps used for a linear warmup from 0 to `learning_rate`.
|
||
|
warmup_steps (`int`, *optional*, defaults to 0):
|
||
|
Number of steps used for a linear warmup from 0 to `learning_rate`. Overrides any effect of `warmup_ratio`.
|
||
|
logging_dir (`str`, *optional*):
|
||
|
[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to
|
||
|
*runs/**CURRENT_DATETIME_HOSTNAME***.
|
||
|
logging_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`):
|
||
|
The logging strategy to adopt during training. Possible values are:
|
||
|
|
||
|
- `"no"`: No logging is done during training.
|
||
|
- `"epoch"`: Logging is done at the end of each epoch.
|
||
|
- `"steps"`: Logging is done every `logging_steps`.
|
||
|
|
||
|
logging_first_step (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to log and evaluate the first `global_step` or not.
|
||
|
logging_steps (`int`, *optional*, defaults to 500):
|
||
|
Number of update steps between two logs if `logging_strategy="steps"`.
|
||
|
save_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`):
|
||
|
The checkpoint save strategy to adopt during training. Possible values are:
|
||
|
|
||
|
- `"no"`: No save is done during training.
|
||
|
- `"epoch"`: Save is done at the end of each epoch.
|
||
|
- `"steps"`: Save is done every `save_steps`.
|
||
|
|
||
|
save_steps (`int`, *optional*, defaults to 500):
|
||
|
Number of updates steps before two checkpoint saves if `save_strategy="steps"`.
|
||
|
save_total_limit (`int`, *optional*):
|
||
|
If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in
|
||
|
`output_dir`.
|
||
|
no_cuda (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to not use CUDA even when it is available or not.
|
||
|
seed (`int`, *optional*, defaults to 42):
|
||
|
Random seed that will be set at the beginning of training.
|
||
|
fp16 (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to use 16-bit (mixed) precision training (through NVIDIA Apex) instead of 32-bit training.
|
||
|
fp16_opt_level (`str`, *optional*, defaults to 'O1'):
|
||
|
For `fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on
|
||
|
the [Apex documentation](https://nvidia.github.io/apex/amp).
|
||
|
local_rank (`int`, *optional*, defaults to -1):
|
||
|
During distributed training, the rank of the process.
|
||
|
tpu_num_cores (`int`, *optional*):
|
||
|
When training on TPU, the number of TPU cores (automatically passed by launcher script).
|
||
|
debug (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to activate the trace to record computation graphs and profiling information or not.
|
||
|
dataloader_drop_last (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size)
|
||
|
or not.
|
||
|
eval_steps (`int`, *optional*, defaults to 1000):
|
||
|
Number of update steps before two evaluations.
|
||
|
past_index (`int`, *optional*, defaults to -1):
|
||
|
Some models like [TransformerXL](../model_doc/transformerxl) or :doc*XLNet <../model_doc/xlnet>* can make
|
||
|
use of the past hidden states for their predictions. If this argument is set to a positive int, the
|
||
|
`Trainer` will use the corresponding output (usually index 2) as the past state and feed it to the model at
|
||
|
the next training step under the keyword argument `mems`.
|
||
|
tpu_name (`str`, *optional*):
|
||
|
The name of the TPU the process is running on.
|
||
|
tpu_zone (`str`, *optional*):
|
||
|
The zone of the TPU the process is running on. If not specified, we will attempt to automatically detect
|
||
|
from metadata.
|
||
|
gcp_project (`str`, *optional*):
|
||
|
Google Cloud Project name for the Cloud TPU-enabled project. If not specified, we will attempt to
|
||
|
automatically detect from metadata.
|
||
|
run_name (`str`, *optional*):
|
||
|
A descriptor for the run. Notably used for wandb logging.
|
||
|
xla (`bool`, *optional*):
|
||
|
Whether to activate the XLA compilation or not.
|
||
|
"""
|
||
|
|
||
|
framework = "tf"
|
||
|
tpu_name: Optional[str] = field(
|
||
|
default=None,
|
||
|
metadata={"help": "Name of TPU"},
|
||
|
)
|
||
|
|
||
|
tpu_zone: Optional[str] = field(
|
||
|
default=None,
|
||
|
metadata={"help": "Zone of TPU"},
|
||
|
)
|
||
|
|
||
|
gcp_project: Optional[str] = field(
|
||
|
default=None,
|
||
|
metadata={"help": "Name of Cloud TPU-enabled project"},
|
||
|
)
|
||
|
|
||
|
poly_power: float = field(
|
||
|
default=1.0,
|
||
|
metadata={"help": "Power for the Polynomial decay LR scheduler."},
|
||
|
)
|
||
|
|
||
|
xla: bool = field(default=False, metadata={"help": "Whether to activate the XLA compilation or not"})
|
||
|
|
||
|
@cached_property
|
||
|
def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", int]:
|
||
|
requires_backends(self, ["tf"])
|
||
|
logger.info("Tensorflow: setting up strategy")
|
||
|
|
||
|
gpus = tf.config.list_physical_devices("GPU")
|
||
|
|
||
|
# Set to float16 at first
|
||
|
if self.fp16:
|
||
|
keras.mixed_precision.set_global_policy("mixed_float16")
|
||
|
|
||
|
if self.no_cuda:
|
||
|
strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0")
|
||
|
else:
|
||
|
try:
|
||
|
if self.tpu_name:
|
||
|
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(
|
||
|
self.tpu_name, zone=self.tpu_zone, project=self.gcp_project
|
||
|
)
|
||
|
else:
|
||
|
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
|
||
|
except ValueError:
|
||
|
if self.tpu_name:
|
||
|
raise RuntimeError(f"Couldn't connect to TPU {self.tpu_name}!")
|
||
|
else:
|
||
|
tpu = None
|
||
|
|
||
|
if tpu:
|
||
|
# Set to bfloat16 in case of TPU
|
||
|
if self.fp16:
|
||
|
keras.mixed_precision.set_global_policy("mixed_bfloat16")
|
||
|
|
||
|
tf.config.experimental_connect_to_cluster(tpu)
|
||
|
tf.tpu.experimental.initialize_tpu_system(tpu)
|
||
|
|
||
|
strategy = tf.distribute.TPUStrategy(tpu)
|
||
|
|
||
|
elif len(gpus) == 0:
|
||
|
strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0")
|
||
|
elif len(gpus) == 1:
|
||
|
strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
|
||
|
elif len(gpus) > 1:
|
||
|
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
|
||
|
strategy = tf.distribute.MirroredStrategy()
|
||
|
else:
|
||
|
raise ValueError("Cannot find the proper strategy, please check your environment properties.")
|
||
|
|
||
|
return strategy
|
||
|
|
||
|
@property
|
||
|
def strategy(self) -> "tf.distribute.Strategy":
|
||
|
"""
|
||
|
The strategy used for distributed training.
|
||
|
"""
|
||
|
requires_backends(self, ["tf"])
|
||
|
return self._setup_strategy
|
||
|
|
||
|
@property
|
||
|
def n_replicas(self) -> int:
|
||
|
"""
|
||
|
The number of replicas (CPUs, GPUs or TPU cores) used in this training.
|
||
|
"""
|
||
|
requires_backends(self, ["tf"])
|
||
|
return self._setup_strategy.num_replicas_in_sync
|
||
|
|
||
|
@property
|
||
|
def should_log(self):
|
||
|
"""
|
||
|
Whether or not the current process should produce log.
|
||
|
"""
|
||
|
return False # TF Logging is handled by Keras not the Trainer
|
||
|
|
||
|
@property
|
||
|
def train_batch_size(self) -> int:
|
||
|
"""
|
||
|
The actual batch size for training (may differ from `per_gpu_train_batch_size` in distributed training).
|
||
|
"""
|
||
|
if self.per_gpu_train_batch_size:
|
||
|
logger.warning(
|
||
|
"Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future "
|
||
|
"version. Using `--per_device_train_batch_size` is preferred."
|
||
|
)
|
||
|
per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size
|
||
|
return per_device_batch_size * self.n_replicas
|
||
|
|
||
|
@property
|
||
|
def eval_batch_size(self) -> int:
|
||
|
"""
|
||
|
The actual batch size for evaluation (may differ from `per_gpu_eval_batch_size` in distributed training).
|
||
|
"""
|
||
|
if self.per_gpu_eval_batch_size:
|
||
|
logger.warning(
|
||
|
"Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future "
|
||
|
"version. Using `--per_device_eval_batch_size` is preferred."
|
||
|
)
|
||
|
per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size
|
||
|
return per_device_batch_size * self.n_replicas
|
||
|
|
||
|
@property
|
||
|
def n_gpu(self) -> int:
|
||
|
"""
|
||
|
The number of replicas (CPUs, GPUs or TPU cores) used in this training.
|
||
|
"""
|
||
|
requires_backends(self, ["tf"])
|
||
|
warnings.warn(
|
||
|
"The n_gpu argument is deprecated and will be removed in a future version, use n_replicas instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
return self._setup_strategy.num_replicas_in_sync
|