ai-content-maker/.venv/Lib/site-packages/thinc/layers/multisoftmax.py

57 lines
1.7 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from typing import Callable, Optional, Tuple, cast
from ..config import registry
from ..model import Model
from ..types import Floats1d, Floats2d
from ..util import get_width
InT = Floats2d
OutT = Floats2d
@registry.layers("MultiSoftmax.v1")
def MultiSoftmax(nOs: Tuple[int, ...], nI: Optional[int] = None) -> Model[InT, OutT]:
"""Neural network layer that predicts several multi-class attributes at once.
For instance, we might predict one class with 6 variables, and another with 5.
We predict the 11 neurons required for this, and then softmax them such
that columns 0-6 make a probability distribution and columns 6-11 make another.
"""
return Model(
"multisoftmax",
forward,
init=init,
dims={"nO": sum(nOs), "nI": nI},
attrs={"nOs": nOs},
params={"W": None, "b": None},
)
def forward(model: Model[InT, OutT], X: InT, is_train: bool) -> Tuple[OutT, Callable]:
nOs = model.attrs["nOs"]
W = cast(Floats2d, model.get_param("W"))
b = cast(Floats1d, model.get_param("b"))
def backprop(dY: OutT) -> InT:
model.inc_grad("W", model.ops.gemm(dY, X, trans1=True))
model.inc_grad("b", dY.sum(axis=0))
return model.ops.gemm(dY, W)
Y = model.ops.gemm(X, W, trans2=True)
Y += b
i = 0
for out_size in nOs:
model.ops.softmax(Y[:, i : i + out_size], inplace=True)
i += out_size
return Y, backprop
def init(
model: Model[InT, OutT], X: Optional[InT] = None, Y: Optional[OutT] = None
) -> None:
if X is not None:
model.set_dim("nI", get_width(X))
nO = model.get_dim("nO")
nI = model.get_dim("nI")
model.set_param("W", model.ops.alloc2f(nO, nI))
model.set_param("b", model.ops.alloc1f(nO))