66 lines
2.1 KiB
Python
66 lines
2.1 KiB
Python
|
from typing import Callable, Optional, Tuple
|
||
|
|
||
|
from ..config import registry
|
||
|
from ..model import Model
|
||
|
from ..types import Ragged
|
||
|
from ..util import get_width
|
||
|
|
||
|
InT = Ragged
|
||
|
OutT = Ragged
|
||
|
|
||
|
|
||
|
@registry.layers("ParametricAttention.v1")
|
||
|
def ParametricAttention(nO: Optional[int] = None) -> Model[InT, OutT]:
|
||
|
"""Weight inputs by similarity to a learned vector"""
|
||
|
return Model("para-attn", forward, init=init, params={"Q": None}, dims={"nO": nO})
|
||
|
|
||
|
|
||
|
def forward(model: Model[InT, OutT], Xr: InT, is_train: bool) -> Tuple[OutT, Callable]:
|
||
|
Q = model.get_param("Q")
|
||
|
attention, bp_attention = _get_attention(model.ops, Q, Xr.dataXd, Xr.lengths)
|
||
|
output, bp_output = _apply_attention(model.ops, attention, Xr.dataXd, Xr.lengths)
|
||
|
|
||
|
def backprop(dYr: OutT) -> InT:
|
||
|
dX, d_attention = bp_output(dYr.dataXd)
|
||
|
dQ, dX2 = bp_attention(d_attention)
|
||
|
model.inc_grad("Q", dQ.ravel())
|
||
|
dX += dX2
|
||
|
return Ragged(dX, dYr.lengths)
|
||
|
|
||
|
return Ragged(output, Xr.lengths), backprop
|
||
|
|
||
|
|
||
|
def init(
|
||
|
model: Model[InT, OutT], X: Optional[InT] = None, Y: Optional[OutT] = None
|
||
|
) -> None:
|
||
|
if X is not None:
|
||
|
model.set_dim("nO", get_width(X))
|
||
|
# Randomly initialize the parameter, as though it were an embedding.
|
||
|
Q = model.ops.alloc1f(model.get_dim("nO"))
|
||
|
Q += model.ops.xp.random.uniform(-0.1, 0.1, Q.shape)
|
||
|
model.set_param("Q", Q)
|
||
|
|
||
|
|
||
|
def _get_attention(ops, Q, X, lengths):
|
||
|
attention = ops.gemm(X, ops.reshape2f(Q, -1, 1))
|
||
|
attention = ops.softmax_sequences(attention, lengths)
|
||
|
|
||
|
def get_attention_bwd(d_attention):
|
||
|
d_attention = ops.backprop_softmax_sequences(d_attention, attention, lengths)
|
||
|
dQ = ops.gemm(X, d_attention, trans1=True)
|
||
|
dX = ops.xp.outer(d_attention, Q)
|
||
|
return dQ, dX
|
||
|
|
||
|
return attention, get_attention_bwd
|
||
|
|
||
|
|
||
|
def _apply_attention(ops, attention, X, lengths):
|
||
|
output = X * attention
|
||
|
|
||
|
def apply_attention_bwd(d_output):
|
||
|
d_attention = (X * d_output).sum(axis=1, keepdims=True)
|
||
|
dX = d_output * attention
|
||
|
return dX, d_attention
|
||
|
|
||
|
return output, apply_attention_bwd
|