95 lines
4.2 KiB
Python
95 lines
4.2 KiB
Python
|
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from ..utils import is_torch_available
|
||
|
|
||
|
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def replace_with_quanto_layers(
|
||
|
model,
|
||
|
quantization_config=None,
|
||
|
modules_to_not_convert=None,
|
||
|
current_key_name=None,
|
||
|
has_been_replaced=False,
|
||
|
):
|
||
|
"""
|
||
|
Public method that recursively replaces the Linear layers of the given model with Quanto quantized layers.
|
||
|
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
|
||
|
|
||
|
Args:
|
||
|
model (`torch.nn.Module`):
|
||
|
The model to convert, can be any `torch.nn.Module` instance.
|
||
|
quantization_config (`AqlmConfig`, defaults to `None`):
|
||
|
The quantization config object that contains the quantization parameters.
|
||
|
modules_to_not_convert (`list`, *optional*, defaults to `None`):
|
||
|
A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be
|
||
|
converted.
|
||
|
current_key_name (`list`, *optional*, defaults to `None`):
|
||
|
A list that contains the current key name. This is used for recursion and should not be passed by the user.
|
||
|
has_been_replaced (`bool`, *optional*, defaults to `None`):
|
||
|
A boolean that indicates if the conversion has been successful or not. This is used for recursion and
|
||
|
should not be passed by the user.
|
||
|
"""
|
||
|
from accelerate import init_empty_weights
|
||
|
from quanto import QLayerNorm, QLinear, qfloat8, qint2, qint4, qint8
|
||
|
|
||
|
w_mapping = {"float8": qfloat8, "int8": qint8, "int4": qint4, "int2": qint2}
|
||
|
a_mapping = {None: None, "float8": qfloat8, "int8": qint8}
|
||
|
|
||
|
if modules_to_not_convert is None:
|
||
|
modules_to_not_convert = []
|
||
|
|
||
|
for name, module in model.named_children():
|
||
|
if current_key_name is None:
|
||
|
current_key_name = []
|
||
|
current_key_name.append(name)
|
||
|
|
||
|
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
||
|
with init_empty_weights():
|
||
|
if isinstance(module, torch.nn.Linear):
|
||
|
model._modules[name] = QLinear(
|
||
|
in_features=module.in_features,
|
||
|
out_features=module.out_features,
|
||
|
bias=module.bias is not None,
|
||
|
dtype=module.weight.dtype,
|
||
|
weights=w_mapping[quantization_config.weights],
|
||
|
activations=a_mapping[quantization_config.activations],
|
||
|
)
|
||
|
model._modules[name].requires_grad_(False)
|
||
|
has_been_replaced = True
|
||
|
elif isinstance(module, torch.nn.LayerNorm):
|
||
|
if quantization_config.activations is not None:
|
||
|
model._modules[name] = QLayerNorm(
|
||
|
module.normalized_shape,
|
||
|
module.eps,
|
||
|
module.elementwise_affine,
|
||
|
module.bias is not None,
|
||
|
activations=a_mapping[quantization_config.activations],
|
||
|
)
|
||
|
has_been_replaced = True
|
||
|
if len(list(module.children())) > 0:
|
||
|
_, has_been_replaced = replace_with_quanto_layers(
|
||
|
module,
|
||
|
quantization_config=quantization_config,
|
||
|
modules_to_not_convert=modules_to_not_convert,
|
||
|
current_key_name=current_key_name,
|
||
|
has_been_replaced=has_been_replaced,
|
||
|
)
|
||
|
# Remove the last key for recursion
|
||
|
current_key_name.pop(-1)
|
||
|
return model, has_been_replaced
|