111 lines
4.5 KiB
Python
111 lines
4.5 KiB
Python
|
from typing import Dict
|
||
|
|
||
|
from ..utils import add_end_docstrings, is_vision_available
|
||
|
from .base import GenericTensor, Pipeline, build_pipeline_init_args
|
||
|
|
||
|
|
||
|
if is_vision_available():
|
||
|
from ..image_utils import load_image
|
||
|
|
||
|
|
||
|
@add_end_docstrings(
|
||
|
build_pipeline_init_args(has_image_processor=True),
|
||
|
"""
|
||
|
image_processor_kwargs (`dict`, *optional*):
|
||
|
Additional dictionary of keyword arguments passed along to the image processor e.g.
|
||
|
{"size": {"height": 100, "width": 100}}
|
||
|
pool (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the pooled output. If `False`, the model will return the raw hidden states.
|
||
|
""",
|
||
|
)
|
||
|
class ImageFeatureExtractionPipeline(Pipeline):
|
||
|
"""
|
||
|
Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base
|
||
|
transformer, which can be used as features in downstream tasks.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import pipeline
|
||
|
|
||
|
>>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction")
|
||
|
>>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True)
|
||
|
>>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image.
|
||
|
torch.Size([1, 197, 768])
|
||
|
```
|
||
|
|
||
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
||
|
|
||
|
This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier:
|
||
|
`"image-feature-extraction"`.
|
||
|
|
||
|
All vision models may be used for this pipeline. See a list of all models, including community-contributed models on
|
||
|
[huggingface.co/models](https://huggingface.co/models).
|
||
|
"""
|
||
|
|
||
|
def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs):
|
||
|
preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs
|
||
|
|
||
|
postprocess_params = {}
|
||
|
if pool is not None:
|
||
|
postprocess_params["pool"] = pool
|
||
|
if return_tensors is not None:
|
||
|
postprocess_params["return_tensors"] = return_tensors
|
||
|
|
||
|
if "timeout" in kwargs:
|
||
|
preprocess_params["timeout"] = kwargs["timeout"]
|
||
|
|
||
|
return preprocess_params, {}, postprocess_params
|
||
|
|
||
|
def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]:
|
||
|
image = load_image(image, timeout=timeout)
|
||
|
model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs)
|
||
|
return model_inputs
|
||
|
|
||
|
def _forward(self, model_inputs):
|
||
|
model_outputs = self.model(**model_inputs)
|
||
|
return model_outputs
|
||
|
|
||
|
def postprocess(self, model_outputs, pool=None, return_tensors=False):
|
||
|
pool = pool if pool is not None else False
|
||
|
|
||
|
if pool:
|
||
|
if "pooler_output" not in model_outputs:
|
||
|
raise ValueError(
|
||
|
"No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option."
|
||
|
)
|
||
|
outputs = model_outputs["pooler_output"]
|
||
|
else:
|
||
|
# [0] is the first available tensor, logits or last_hidden_state.
|
||
|
outputs = model_outputs[0]
|
||
|
|
||
|
if return_tensors:
|
||
|
return outputs
|
||
|
if self.framework == "pt":
|
||
|
return outputs.tolist()
|
||
|
elif self.framework == "tf":
|
||
|
return outputs.numpy().tolist()
|
||
|
|
||
|
def __call__(self, *args, **kwargs):
|
||
|
"""
|
||
|
Extract the features of the input(s).
|
||
|
|
||
|
Args:
|
||
|
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
|
||
|
The pipeline handles three types of images:
|
||
|
|
||
|
- A string containing a http link pointing to an image
|
||
|
- A string containing a local path to an image
|
||
|
- An image loaded in PIL directly
|
||
|
|
||
|
The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
|
||
|
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
|
||
|
images.
|
||
|
timeout (`float`, *optional*, defaults to None):
|
||
|
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and
|
||
|
the call may block forever.
|
||
|
Return:
|
||
|
A nested list of `float`: The features computed by the model.
|
||
|
"""
|
||
|
return super().__call__(*args, **kwargs)
|