ai-content-maker/.venv/Lib/site-packages/transformers/pipelines/image_feature_extraction.py

111 lines
4.5 KiB
Python

from typing import Dict
from ..utils import add_end_docstrings, is_vision_available
from .base import GenericTensor, Pipeline, build_pipeline_init_args
if is_vision_available():
from ..image_utils import load_image
@add_end_docstrings(
build_pipeline_init_args(has_image_processor=True),
"""
image_processor_kwargs (`dict`, *optional*):
Additional dictionary of keyword arguments passed along to the image processor e.g.
{"size": {"height": 100, "width": 100}}
pool (`bool`, *optional*, defaults to `False`):
Whether or not to return the pooled output. If `False`, the model will return the raw hidden states.
""",
)
class ImageFeatureExtractionPipeline(Pipeline):
"""
Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base
transformer, which can be used as features in downstream tasks.
Example:
```python
>>> from transformers import pipeline
>>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction")
>>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True)
>>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image.
torch.Size([1, 197, 768])
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier:
`"image-feature-extraction"`.
All vision models may be used for this pipeline. See a list of all models, including community-contributed models on
[huggingface.co/models](https://huggingface.co/models).
"""
def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs):
preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs
postprocess_params = {}
if pool is not None:
postprocess_params["pool"] = pool
if return_tensors is not None:
postprocess_params["return_tensors"] = return_tensors
if "timeout" in kwargs:
preprocess_params["timeout"] = kwargs["timeout"]
return preprocess_params, {}, postprocess_params
def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]:
image = load_image(image, timeout=timeout)
model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs)
return model_inputs
def _forward(self, model_inputs):
model_outputs = self.model(**model_inputs)
return model_outputs
def postprocess(self, model_outputs, pool=None, return_tensors=False):
pool = pool if pool is not None else False
if pool:
if "pooler_output" not in model_outputs:
raise ValueError(
"No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option."
)
outputs = model_outputs["pooler_output"]
else:
# [0] is the first available tensor, logits or last_hidden_state.
outputs = model_outputs[0]
if return_tensors:
return outputs
if self.framework == "pt":
return outputs.tolist()
elif self.framework == "tf":
return outputs.numpy().tolist()
def __call__(self, *args, **kwargs):
"""
Extract the features of the input(s).
Args:
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
The pipeline handles three types of images:
- A string containing a http link pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
images.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and
the call may block forever.
Return:
A nested list of `float`: The features computed by the model.
"""
return super().__call__(*args, **kwargs)