ai-content-maker/.venv/Lib/site-packages/TTS/tts/layers/xtts/latent_encoder.py

142 lines
4.3 KiB
Python

# ported from: Originally ported from: https://github.com/neonbjb/tortoise-tts
import math
import torch
from torch import nn
from torch.nn import functional as F
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
def conv_nd(dims, *args, **kwargs):
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def normalization(channels):
groups = 32
if channels <= 16:
groups = 8
elif channels <= 64:
groups = 16
while channels % groups != 0:
groups = int(groups / 2)
assert groups > 2
return GroupNorm32(groups, channels)
def zero_module(module):
for p in module.parameters():
p.detach().zero_()
return module
class QKVAttention(nn.Module):
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv, mask=None, qk_bias=0):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
weight = weight + qk_bias
if mask is not None:
mask = mask.repeat(self.n_heads, 1, 1)
weight[mask.logical_not()] = -torch.inf
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
a = torch.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
class AttentionBlock(nn.Module):
"""An attention block that allows spatial positions to attend to each other."""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
out_channels=None,
do_activation=False,
):
super().__init__()
self.channels = channels
out_channels = channels if out_channels is None else out_channels
self.do_activation = do_activation
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.norm = normalization(channels)
self.qkv = conv_nd(1, channels, out_channels * 3, 1)
self.attention = QKVAttention(self.num_heads)
self.x_proj = nn.Identity() if out_channels == channels else conv_nd(1, channels, out_channels, 1)
self.proj_out = zero_module(conv_nd(1, out_channels, out_channels, 1))
def forward(self, x, mask=None, qk_bias=0):
b, c, *spatial = x.shape
if mask is not None:
if len(mask.shape) == 2:
mask = mask.unsqueeze(0).repeat(x.shape[0], 1, 1)
if mask.shape[1] != x.shape[-1]:
mask = mask[:, : x.shape[-1], : x.shape[-1]]
x = x.reshape(b, c, -1)
x = self.norm(x)
if self.do_activation:
x = F.silu(x, inplace=True)
qkv = self.qkv(x)
h = self.attention(qkv, mask=mask, qk_bias=qk_bias)
h = self.proj_out(h)
xp = self.x_proj(x)
return (xp + h).reshape(b, xp.shape[1], *spatial)
class ConditioningEncoder(nn.Module):
def __init__(
self,
spec_dim,
embedding_dim,
attn_blocks=6,
num_attn_heads=4,
):
super().__init__()
attn = []
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
def forward(self, x):
"""
x: (b, 80, s)
"""
h = self.init(x)
h = self.attn(h)
return h