ai-content-maker/.venv/Lib/site-packages/nltk/test/unit/lm/test_models.py

611 lines
19 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Natural Language Toolkit: Language Model Unit Tests
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Ilia Kurenkov <ilia.kurenkov@gmail.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import math
from operator import itemgetter
import pytest
from nltk.lm import (
MLE,
AbsoluteDiscountingInterpolated,
KneserNeyInterpolated,
Laplace,
Lidstone,
StupidBackoff,
Vocabulary,
WittenBellInterpolated,
)
from nltk.lm.preprocessing import padded_everygrams
@pytest.fixture(scope="session")
def vocabulary():
return Vocabulary(["a", "b", "c", "d", "z", "<s>", "</s>"], unk_cutoff=1)
@pytest.fixture(scope="session")
def training_data():
return [["a", "b", "c", "d"], ["e", "g", "a", "d", "b", "e"]]
@pytest.fixture(scope="session")
def bigram_training_data(training_data):
return [list(padded_everygrams(2, sent)) for sent in training_data]
@pytest.fixture(scope="session")
def trigram_training_data(training_data):
return [list(padded_everygrams(3, sent)) for sent in training_data]
@pytest.fixture
def mle_bigram_model(vocabulary, bigram_training_data):
model = MLE(2, vocabulary=vocabulary)
model.fit(bigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
("d", ["c"], 1),
# Unseen ngrams should yield 0
("d", ["e"], 0),
# Unigrams should also be 0
("z", None, 0),
# N unigrams = 14
# count('a') = 2
("a", None, 2.0 / 14),
# count('y') = 3
("y", None, 3.0 / 14),
],
)
def test_mle_bigram_scores(mle_bigram_model, word, context, expected_score):
assert pytest.approx(mle_bigram_model.score(word, context), 1e-4) == expected_score
def test_mle_bigram_logscore_for_zero_score(mle_bigram_model):
assert math.isinf(mle_bigram_model.logscore("d", ["e"]))
def test_mle_bigram_entropy_perplexity_seen(mle_bigram_model):
# ngrams seen during training
trained = [
("<s>", "a"),
("a", "b"),
("b", "<UNK>"),
("<UNK>", "a"),
("a", "d"),
("d", "</s>"),
]
# Ngram = Log score
# <s>, a = -1
# a, b = -1
# b, UNK = -1
# UNK, a = -1.585
# a, d = -1
# d, </s> = -1
# TOTAL logscores = -6.585
# - AVG logscores = 1.0975
H = 1.0975
perplexity = 2.1398
assert pytest.approx(mle_bigram_model.entropy(trained), 1e-4) == H
assert pytest.approx(mle_bigram_model.perplexity(trained), 1e-4) == perplexity
def test_mle_bigram_entropy_perplexity_unseen(mle_bigram_model):
# In MLE, even one unseen ngram should make entropy and perplexity infinite
untrained = [("<s>", "a"), ("a", "c"), ("c", "d"), ("d", "</s>")]
assert math.isinf(mle_bigram_model.entropy(untrained))
assert math.isinf(mle_bigram_model.perplexity(untrained))
def test_mle_bigram_entropy_perplexity_unigrams(mle_bigram_model):
# word = score, log score
# <s> = 0.1429, -2.8074
# a = 0.1429, -2.8074
# c = 0.0714, -3.8073
# UNK = 0.2143, -2.2224
# d = 0.1429, -2.8074
# c = 0.0714, -3.8073
# </s> = 0.1429, -2.8074
# TOTAL logscores = -21.6243
# - AVG logscores = 3.0095
H = 3.0095
perplexity = 8.0529
text = [("<s>",), ("a",), ("c",), ("-",), ("d",), ("c",), ("</s>",)]
assert pytest.approx(mle_bigram_model.entropy(text), 1e-4) == H
assert pytest.approx(mle_bigram_model.perplexity(text), 1e-4) == perplexity
@pytest.fixture
def mle_trigram_model(trigram_training_data, vocabulary):
model = MLE(order=3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# count(d | b, c) = 1
# count(b, c) = 1
("d", ("b", "c"), 1),
# count(d | c) = 1
# count(c) = 1
("d", ["c"], 1),
# total number of tokens is 18, of which "a" occurred 2 times
("a", None, 2.0 / 18),
# in vocabulary but unseen
("z", None, 0),
# out of vocabulary should use "UNK" score
("y", None, 3.0 / 18),
],
)
def test_mle_trigram_scores(mle_trigram_model, word, context, expected_score):
assert pytest.approx(mle_trigram_model.score(word, context), 1e-4) == expected_score
@pytest.fixture
def lidstone_bigram_model(bigram_training_data, vocabulary):
model = Lidstone(0.1, order=2, vocabulary=vocabulary)
model.fit(bigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# count(d | c) = 1
# *count(d | c) = 1.1
# Count(w | c for w in vocab) = 1
# *Count(w | c for w in vocab) = 1.8
("d", ["c"], 1.1 / 1.8),
# Total unigrams: 14
# Vocab size: 8
# Denominator: 14 + 0.8 = 14.8
# count("a") = 2
# *count("a") = 2.1
("a", None, 2.1 / 14.8),
# in vocabulary but unseen
# count("z") = 0
# *count("z") = 0.1
("z", None, 0.1 / 14.8),
# out of vocabulary should use "UNK" score
# count("<UNK>") = 3
# *count("<UNK>") = 3.1
("y", None, 3.1 / 14.8),
],
)
def test_lidstone_bigram_score(lidstone_bigram_model, word, context, expected_score):
assert (
pytest.approx(lidstone_bigram_model.score(word, context), 1e-4)
== expected_score
)
def test_lidstone_entropy_perplexity(lidstone_bigram_model):
text = [
("<s>", "a"),
("a", "c"),
("c", "<UNK>"),
("<UNK>", "d"),
("d", "c"),
("c", "</s>"),
]
# Unlike MLE this should be able to handle completely novel ngrams
# Ngram = score, log score
# <s>, a = 0.3929, -1.3479
# a, c = 0.0357, -4.8074
# c, UNK = 0.0(5), -4.1699
# UNK, d = 0.0263, -5.2479
# d, c = 0.0357, -4.8074
# c, </s> = 0.0(5), -4.1699
# TOTAL logscore: 24.5504
# - AVG logscore: 4.0917
H = 4.0917
perplexity = 17.0504
assert pytest.approx(lidstone_bigram_model.entropy(text), 1e-4) == H
assert pytest.approx(lidstone_bigram_model.perplexity(text), 1e-4) == perplexity
@pytest.fixture
def lidstone_trigram_model(trigram_training_data, vocabulary):
model = Lidstone(0.1, order=3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# Logic behind this is the same as for bigram model
("d", ["c"], 1.1 / 1.8),
# if we choose a word that hasn't appeared after (b, c)
("e", ["c"], 0.1 / 1.8),
# Trigram score now
("d", ["b", "c"], 1.1 / 1.8),
("e", ["b", "c"], 0.1 / 1.8),
],
)
def test_lidstone_trigram_score(lidstone_trigram_model, word, context, expected_score):
assert (
pytest.approx(lidstone_trigram_model.score(word, context), 1e-4)
== expected_score
)
@pytest.fixture
def laplace_bigram_model(bigram_training_data, vocabulary):
model = Laplace(2, vocabulary=vocabulary)
model.fit(bigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# basic sanity-check:
# count(d | c) = 1
# *count(d | c) = 2
# Count(w | c for w in vocab) = 1
# *Count(w | c for w in vocab) = 9
("d", ["c"], 2.0 / 9),
# Total unigrams: 14
# Vocab size: 8
# Denominator: 14 + 8 = 22
# count("a") = 2
# *count("a") = 3
("a", None, 3.0 / 22),
# in vocabulary but unseen
# count("z") = 0
# *count("z") = 1
("z", None, 1.0 / 22),
# out of vocabulary should use "UNK" score
# count("<UNK>") = 3
# *count("<UNK>") = 4
("y", None, 4.0 / 22),
],
)
def test_laplace_bigram_score(laplace_bigram_model, word, context, expected_score):
assert (
pytest.approx(laplace_bigram_model.score(word, context), 1e-4) == expected_score
)
def test_laplace_bigram_entropy_perplexity(laplace_bigram_model):
text = [
("<s>", "a"),
("a", "c"),
("c", "<UNK>"),
("<UNK>", "d"),
("d", "c"),
("c", "</s>"),
]
# Unlike MLE this should be able to handle completely novel ngrams
# Ngram = score, log score
# <s>, a = 0.2, -2.3219
# a, c = 0.1, -3.3219
# c, UNK = 0.(1), -3.1699
# UNK, d = 0.(09), 3.4594
# d, c = 0.1 -3.3219
# c, </s> = 0.(1), -3.1699
# Total logscores: 18.7651
# - AVG logscores: 3.1275
H = 3.1275
perplexity = 8.7393
assert pytest.approx(laplace_bigram_model.entropy(text), 1e-4) == H
assert pytest.approx(laplace_bigram_model.perplexity(text), 1e-4) == perplexity
def test_laplace_gamma(laplace_bigram_model):
assert laplace_bigram_model.gamma == 1
@pytest.fixture
def wittenbell_trigram_model(trigram_training_data, vocabulary):
model = WittenBellInterpolated(3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# For unigram scores by default revert to regular MLE
# Total unigrams: 18
# Vocab Size = 7
# count('c'): 1
("c", None, 1.0 / 18),
# in vocabulary but unseen
# count("z") = 0
("z", None, 0 / 18),
# out of vocabulary should use "UNK" score
# count("<UNK>") = 3
("y", None, 3.0 / 18),
# 2 words follow b and b occurred a total of 2 times
# gamma(['b']) = 2 / (2 + 2) = 0.5
# mle.score('c', ['b']) = 0.5
# mle('c') = 1 / 18 = 0.055
# (1 - gamma) * mle + gamma * mle('c') ~= 0.27 + 0.055
("c", ["b"], (1 - 0.5) * 0.5 + 0.5 * 1 / 18),
# building on that, let's try 'a b c' as the trigram
# 1 word follows 'a b' and 'a b' occurred 1 time
# gamma(['a', 'b']) = 1 / (1 + 1) = 0.5
# mle("c", ["a", "b"]) = 1
("c", ["a", "b"], (1 - 0.5) + 0.5 * ((1 - 0.5) * 0.5 + 0.5 * 1 / 18)),
# P(c|zb)
# The ngram 'zbc' was not seen, so we use P(c|b). See issue #2332.
("c", ["z", "b"], ((1 - 0.5) * 0.5 + 0.5 * 1 / 18)),
],
)
def test_wittenbell_trigram_score(
wittenbell_trigram_model, word, context, expected_score
):
assert (
pytest.approx(wittenbell_trigram_model.score(word, context), 1e-4)
== expected_score
)
###############################################################################
# Notation Explained #
###############################################################################
# For all subsequent calculations we use the following notation:
# 1. '*': Placeholder for any word/character. E.g. '*b' stands for
# all bigrams that end in 'b'. '*b*' stands for all trigrams that
# contain 'b' in the middle.
# 1. count(ngram): Count all instances (tokens) of an ngram.
# 1. unique(ngram): Count unique instances (types) of an ngram.
@pytest.fixture
def kneserney_trigram_model(trigram_training_data, vocabulary):
model = KneserNeyInterpolated(order=3, discount=0.75, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# P(c) = count('*c') / unique('**')
# = 1 / 14
("c", None, 1.0 / 14),
# P(z) = count('*z') / unique('**')
# = 0 / 14
# 'z' is in the vocabulary, but it was not seen during training.
("z", None, 0.0 / 14),
# P(y)
# Out of vocabulary should use "UNK" score.
# P(y) = P(UNK) = count('*UNK') / unique('**')
("y", None, 3 / 14),
# We start with P(c|b)
# P(c|b) = alpha('bc') + gamma('b') * P(c)
# alpha('bc') = max(unique('*bc') - discount, 0) / unique('*b*')
# = max(1 - 0.75, 0) / 2
# = 0.125
# gamma('b') = discount * unique('b*') / unique('*b*')
# = (0.75 * 2) / 2
# = 0.75
("c", ["b"], (0.125 + 0.75 * (1 / 14))),
# Building on that, let's try P(c|ab).
# P(c|ab) = alpha('abc') + gamma('ab') * P(c|b)
# alpha('abc') = max(count('abc') - discount, 0) / count('ab*')
# = max(1 - 0.75, 0) / 1
# = 0.25
# gamma('ab') = (discount * unique('ab*')) / count('ab*')
# = 0.75 * 1 / 1
("c", ["a", "b"], 0.25 + 0.75 * (0.125 + 0.75 * (1 / 14))),
# P(c|zb)
# The ngram 'zbc' was not seen, so we use P(c|b). See issue #2332.
("c", ["z", "b"], (0.125 + 0.75 * (1 / 14))),
],
)
def test_kneserney_trigram_score(
kneserney_trigram_model, word, context, expected_score
):
assert (
pytest.approx(kneserney_trigram_model.score(word, context), 1e-4)
== expected_score
)
@pytest.fixture
def absolute_discounting_trigram_model(trigram_training_data, vocabulary):
model = AbsoluteDiscountingInterpolated(order=3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# For unigram scores revert to uniform
# P(c) = count('c') / count('**')
("c", None, 1.0 / 18),
# in vocabulary but unseen
# count('z') = 0
("z", None, 0.0 / 18),
# out of vocabulary should use "UNK" score
# count('<UNK>') = 3
("y", None, 3 / 18),
# P(c|b) = alpha('bc') + gamma('b') * P(c)
# alpha('bc') = max(count('bc') - discount, 0) / count('b*')
# = max(1 - 0.75, 0) / 2
# = 0.125
# gamma('b') = discount * unique('b*') / count('b*')
# = (0.75 * 2) / 2
# = 0.75
("c", ["b"], (0.125 + 0.75 * (2 / 2) * (1 / 18))),
# Building on that, let's try P(c|ab).
# P(c|ab) = alpha('abc') + gamma('ab') * P(c|b)
# alpha('abc') = max(count('abc') - discount, 0) / count('ab*')
# = max(1 - 0.75, 0) / 1
# = 0.25
# gamma('ab') = (discount * unique('ab*')) / count('ab*')
# = 0.75 * 1 / 1
("c", ["a", "b"], 0.25 + 0.75 * (0.125 + 0.75 * (2 / 2) * (1 / 18))),
# P(c|zb)
# The ngram 'zbc' was not seen, so we use P(c|b). See issue #2332.
("c", ["z", "b"], (0.125 + 0.75 * (2 / 2) * (1 / 18))),
],
)
def test_absolute_discounting_trigram_score(
absolute_discounting_trigram_model, word, context, expected_score
):
assert (
pytest.approx(absolute_discounting_trigram_model.score(word, context), 1e-4)
== expected_score
)
@pytest.fixture
def stupid_backoff_trigram_model(trigram_training_data, vocabulary):
model = StupidBackoff(order=3, vocabulary=vocabulary)
model.fit(trigram_training_data)
return model
@pytest.mark.parametrize(
"word, context, expected_score",
[
# For unigram scores revert to uniform
# total bigrams = 18
("c", None, 1.0 / 18),
# in vocabulary but unseen
# bigrams ending with z = 0
("z", None, 0.0 / 18),
# out of vocabulary should use "UNK" score
# count('<UNK>'): 3
("y", None, 3 / 18),
# c follows 1 time out of 2 after b
("c", ["b"], 1 / 2),
# c always follows ab
("c", ["a", "b"], 1 / 1),
# The ngram 'z b c' was not seen, so we backoff to
# the score of the ngram 'b c' * smoothing factor
("c", ["z", "b"], (0.4 * (1 / 2))),
],
)
def test_stupid_backoff_trigram_score(
stupid_backoff_trigram_model, word, context, expected_score
):
assert (
pytest.approx(stupid_backoff_trigram_model.score(word, context), 1e-4)
== expected_score
)
###############################################################################
# Probability Distributions Should Sum up to Unity #
###############################################################################
@pytest.fixture(scope="session")
def kneserney_bigram_model(bigram_training_data, vocabulary):
model = KneserNeyInterpolated(order=2, vocabulary=vocabulary)
model.fit(bigram_training_data)
return model
@pytest.mark.parametrize(
"model_fixture",
[
"mle_bigram_model",
"mle_trigram_model",
"lidstone_bigram_model",
"laplace_bigram_model",
"wittenbell_trigram_model",
"absolute_discounting_trigram_model",
"kneserney_bigram_model",
pytest.param(
"stupid_backoff_trigram_model",
marks=pytest.mark.xfail(
reason="Stupid Backoff is not a valid distribution"
),
),
],
)
@pytest.mark.parametrize(
"context",
[("a",), ("c",), ("<s>",), ("b",), ("<UNK>",), ("d",), ("e",), ("r",), ("w",)],
ids=itemgetter(0),
)
def test_sums_to_1(model_fixture, context, request):
model = request.getfixturevalue(model_fixture)
scores_for_context = sum(model.score(w, context) for w in model.vocab)
assert pytest.approx(scores_for_context, 1e-7) == 1.0
###############################################################################
# Generating Text #
###############################################################################
def test_generate_one_no_context(mle_trigram_model):
assert mle_trigram_model.generate(random_seed=3) == "<UNK>"
def test_generate_one_from_limiting_context(mle_trigram_model):
# We don't need random_seed for contexts with only one continuation
assert mle_trigram_model.generate(text_seed=["c"]) == "d"
assert mle_trigram_model.generate(text_seed=["b", "c"]) == "d"
assert mle_trigram_model.generate(text_seed=["a", "c"]) == "d"
def test_generate_one_from_varied_context(mle_trigram_model):
# When context doesn't limit our options enough, seed the random choice
assert mle_trigram_model.generate(text_seed=("a", "<s>"), random_seed=2) == "a"
def test_generate_cycle(mle_trigram_model):
# Add a cycle to the model: bd -> b, db -> d
more_training_text = [padded_everygrams(mle_trigram_model.order, list("bdbdbd"))]
mle_trigram_model.fit(more_training_text)
# Test that we can escape the cycle
assert mle_trigram_model.generate(7, text_seed=("b", "d"), random_seed=5) == [
"b",
"d",
"b",
"d",
"b",
"d",
"</s>",
]
def test_generate_with_text_seed(mle_trigram_model):
assert mle_trigram_model.generate(5, text_seed=("<s>", "e"), random_seed=3) == [
"<UNK>",
"a",
"d",
"b",
"<UNK>",
]
def test_generate_oov_text_seed(mle_trigram_model):
assert mle_trigram_model.generate(
text_seed=("aliens",), random_seed=3
) == mle_trigram_model.generate(text_seed=("<UNK>",), random_seed=3)
def test_generate_None_text_seed(mle_trigram_model):
# should crash with type error when we try to look it up in vocabulary
with pytest.raises(TypeError):
mle_trigram_model.generate(text_seed=(None,))
# This will work
assert mle_trigram_model.generate(
text_seed=None, random_seed=3
) == mle_trigram_model.generate(random_seed=3)