388 lines
16 KiB
Python
388 lines
16 KiB
Python
from sympy.core.containers import Tuple
|
|
from sympy.core.function import Derivative
|
|
from sympy.core.numbers import (I, Rational, oo, pi)
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import symbols
|
|
from sympy.functions.elementary.exponential import (exp, log)
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.trigonometric import cos
|
|
from sympy.functions.special.gamma_functions import gamma
|
|
from sympy.functions.special.hyper import (appellf1, hyper, meijerg)
|
|
from sympy.series.order import O
|
|
from sympy.abc import x, z, k
|
|
from sympy.series.limits import limit
|
|
from sympy.testing.pytest import raises, slow
|
|
from sympy.core.random import (
|
|
random_complex_number as randcplx,
|
|
verify_numerically as tn,
|
|
test_derivative_numerically as td)
|
|
|
|
|
|
def test_TupleParametersBase():
|
|
# test that our implementation of the chain rule works
|
|
p = hyper((), (), z**2)
|
|
assert p.diff(z) == p*2*z
|
|
|
|
|
|
def test_hyper():
|
|
raises(TypeError, lambda: hyper(1, 2, z))
|
|
|
|
assert hyper((1, 2), (1,), z) == hyper(Tuple(1, 2), Tuple(1), z)
|
|
|
|
h = hyper((1, 2), (3, 4, 5), z)
|
|
assert h.ap == Tuple(1, 2)
|
|
assert h.bq == Tuple(3, 4, 5)
|
|
assert h.argument == z
|
|
assert h.is_commutative is True
|
|
|
|
# just a few checks to make sure that all arguments go where they should
|
|
assert tn(hyper(Tuple(), Tuple(), z), exp(z), z)
|
|
assert tn(z*hyper((1, 1), Tuple(2), -z), log(1 + z), z)
|
|
|
|
# differentiation
|
|
h = hyper(
|
|
(randcplx(), randcplx(), randcplx()), (randcplx(), randcplx()), z)
|
|
assert td(h, z)
|
|
|
|
a1, a2, b1, b2, b3 = symbols('a1:3, b1:4')
|
|
assert hyper((a1, a2), (b1, b2, b3), z).diff(z) == \
|
|
a1*a2/(b1*b2*b3) * hyper((a1 + 1, a2 + 1), (b1 + 1, b2 + 1, b3 + 1), z)
|
|
|
|
# differentiation wrt parameters is not supported
|
|
assert hyper([z], [], z).diff(z) == Derivative(hyper([z], [], z), z)
|
|
|
|
# hyper is unbranched wrt parameters
|
|
from sympy.functions.elementary.complexes import polar_lift
|
|
assert hyper([polar_lift(z)], [polar_lift(k)], polar_lift(x)) == \
|
|
hyper([z], [k], polar_lift(x))
|
|
|
|
# hyper does not automatically evaluate anyway, but the test is to make
|
|
# sure that the evaluate keyword is accepted
|
|
assert hyper((1, 2), (1,), z, evaluate=False).func is hyper
|
|
|
|
|
|
def test_expand_func():
|
|
# evaluation at 1 of Gauss' hypergeometric function:
|
|
from sympy.abc import a, b, c
|
|
from sympy.core.function import expand_func
|
|
a1, b1, c1 = randcplx(), randcplx(), randcplx() + 5
|
|
assert expand_func(hyper([a, b], [c], 1)) == \
|
|
gamma(c)*gamma(-a - b + c)/(gamma(-a + c)*gamma(-b + c))
|
|
assert abs(expand_func(hyper([a1, b1], [c1], 1)).n()
|
|
- hyper([a1, b1], [c1], 1).n()) < 1e-10
|
|
|
|
# hyperexpand wrapper for hyper:
|
|
assert expand_func(hyper([], [], z)) == exp(z)
|
|
assert expand_func(hyper([1, 2, 3], [], z)) == hyper([1, 2, 3], [], z)
|
|
assert expand_func(meijerg([[1, 1], []], [[1], [0]], z)) == log(z + 1)
|
|
assert expand_func(meijerg([[1, 1], []], [[], []], z)) == \
|
|
meijerg([[1, 1], []], [[], []], z)
|
|
|
|
|
|
def replace_dummy(expr, sym):
|
|
from sympy.core.symbol import Dummy
|
|
dum = expr.atoms(Dummy)
|
|
if not dum:
|
|
return expr
|
|
assert len(dum) == 1
|
|
return expr.xreplace({dum.pop(): sym})
|
|
|
|
|
|
def test_hyper_rewrite_sum():
|
|
from sympy.concrete.summations import Sum
|
|
from sympy.core.symbol import Dummy
|
|
from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial)
|
|
_k = Dummy("k")
|
|
assert replace_dummy(hyper((1, 2), (1, 3), x).rewrite(Sum), _k) == \
|
|
Sum(x**_k / factorial(_k) * RisingFactorial(2, _k) /
|
|
RisingFactorial(3, _k), (_k, 0, oo))
|
|
|
|
assert hyper((1, 2, 3), (-1, 3), z).rewrite(Sum) == \
|
|
hyper((1, 2, 3), (-1, 3), z)
|
|
|
|
|
|
def test_radius_of_convergence():
|
|
assert hyper((1, 2), [3], z).radius_of_convergence == 1
|
|
assert hyper((1, 2), [3, 4], z).radius_of_convergence is oo
|
|
assert hyper((1, 2, 3), [4], z).radius_of_convergence == 0
|
|
assert hyper((0, 1, 2), [4], z).radius_of_convergence is oo
|
|
assert hyper((-1, 1, 2), [-4], z).radius_of_convergence == 0
|
|
assert hyper((-1, -2, 2), [-1], z).radius_of_convergence is oo
|
|
assert hyper((-1, 2), [-1, -2], z).radius_of_convergence == 0
|
|
assert hyper([-1, 1, 3], [-2, 2], z).radius_of_convergence == 1
|
|
assert hyper([-1, 1], [-2, 2], z).radius_of_convergence is oo
|
|
assert hyper([-1, 1, 3], [-2], z).radius_of_convergence == 0
|
|
assert hyper((-1, 2, 3, 4), [], z).radius_of_convergence is oo
|
|
|
|
assert hyper([1, 1], [3], 1).convergence_statement == True
|
|
assert hyper([1, 1], [2], 1).convergence_statement == False
|
|
assert hyper([1, 1], [2], -1).convergence_statement == True
|
|
assert hyper([1, 1], [1], -1).convergence_statement == False
|
|
|
|
|
|
def test_meijer():
|
|
raises(TypeError, lambda: meijerg(1, z))
|
|
raises(TypeError, lambda: meijerg(((1,), (2,)), (3,), (4,), z))
|
|
|
|
assert meijerg(((1, 2), (3,)), ((4,), (5,)), z) == \
|
|
meijerg(Tuple(1, 2), Tuple(3), Tuple(4), Tuple(5), z)
|
|
|
|
g = meijerg((1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13, 14), z)
|
|
assert g.an == Tuple(1, 2)
|
|
assert g.ap == Tuple(1, 2, 3, 4, 5)
|
|
assert g.aother == Tuple(3, 4, 5)
|
|
assert g.bm == Tuple(6, 7, 8, 9)
|
|
assert g.bq == Tuple(6, 7, 8, 9, 10, 11, 12, 13, 14)
|
|
assert g.bother == Tuple(10, 11, 12, 13, 14)
|
|
assert g.argument == z
|
|
assert g.nu == 75
|
|
assert g.delta == -1
|
|
assert g.is_commutative is True
|
|
assert g.is_number is False
|
|
#issue 13071
|
|
assert meijerg([[],[]], [[S.Half],[0]], 1).is_number is True
|
|
|
|
assert meijerg([1, 2], [3], [4], [5], z).delta == S.Half
|
|
|
|
# just a few checks to make sure that all arguments go where they should
|
|
assert tn(meijerg(Tuple(), Tuple(), Tuple(0), Tuple(), -z), exp(z), z)
|
|
assert tn(sqrt(pi)*meijerg(Tuple(), Tuple(),
|
|
Tuple(0), Tuple(S.Half), z**2/4), cos(z), z)
|
|
assert tn(meijerg(Tuple(1, 1), Tuple(), Tuple(1), Tuple(0), z),
|
|
log(1 + z), z)
|
|
|
|
# test exceptions
|
|
raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((oo,), (2, 0)), x))
|
|
raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((1,), (2, 0)), x))
|
|
|
|
# differentiation
|
|
g = meijerg((randcplx(),), (randcplx() + 2*I,), Tuple(),
|
|
(randcplx(), randcplx()), z)
|
|
assert td(g, z)
|
|
|
|
g = meijerg(Tuple(), (randcplx(),), Tuple(),
|
|
(randcplx(), randcplx()), z)
|
|
assert td(g, z)
|
|
|
|
g = meijerg(Tuple(), Tuple(), Tuple(randcplx()),
|
|
Tuple(randcplx(), randcplx()), z)
|
|
assert td(g, z)
|
|
|
|
a1, a2, b1, b2, c1, c2, d1, d2 = symbols('a1:3, b1:3, c1:3, d1:3')
|
|
assert meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z).diff(z) == \
|
|
(meijerg((a1 - 1, a2), (b1, b2), (c1, c2), (d1, d2), z)
|
|
+ (a1 - 1)*meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z))/z
|
|
|
|
assert meijerg([z, z], [], [], [], z).diff(z) == \
|
|
Derivative(meijerg([z, z], [], [], [], z), z)
|
|
|
|
# meijerg is unbranched wrt parameters
|
|
from sympy.functions.elementary.complexes import polar_lift as pl
|
|
assert meijerg([pl(a1)], [pl(a2)], [pl(b1)], [pl(b2)], pl(z)) == \
|
|
meijerg([a1], [a2], [b1], [b2], pl(z))
|
|
|
|
# integrand
|
|
from sympy.abc import a, b, c, d, s
|
|
assert meijerg([a], [b], [c], [d], z).integrand(s) == \
|
|
z**s*gamma(c - s)*gamma(-a + s + 1)/(gamma(b - s)*gamma(-d + s + 1))
|
|
|
|
|
|
def test_meijerg_derivative():
|
|
assert meijerg([], [1, 1], [0, 0, x], [], z).diff(x) == \
|
|
log(z)*meijerg([], [1, 1], [0, 0, x], [], z) \
|
|
+ 2*meijerg([], [1, 1, 1], [0, 0, x, 0], [], z)
|
|
|
|
y = randcplx()
|
|
a = 5 # mpmath chokes with non-real numbers, and Mod1 with floats
|
|
assert td(meijerg([x], [], [], [], y), x)
|
|
assert td(meijerg([x**2], [], [], [], y), x)
|
|
assert td(meijerg([], [x], [], [], y), x)
|
|
assert td(meijerg([], [], [x], [], y), x)
|
|
assert td(meijerg([], [], [], [x], y), x)
|
|
assert td(meijerg([x], [a], [a + 1], [], y), x)
|
|
assert td(meijerg([x], [a + 1], [a], [], y), x)
|
|
assert td(meijerg([x, a], [], [], [a + 1], y), x)
|
|
assert td(meijerg([x, a + 1], [], [], [a], y), x)
|
|
b = Rational(3, 2)
|
|
assert td(meijerg([a + 2], [b], [b - 3, x], [a], y), x)
|
|
|
|
|
|
def test_meijerg_period():
|
|
assert meijerg([], [1], [0], [], x).get_period() == 2*pi
|
|
assert meijerg([1], [], [], [0], x).get_period() == 2*pi
|
|
assert meijerg([], [], [0], [], x).get_period() == 2*pi # exp(x)
|
|
assert meijerg(
|
|
[], [], [0], [S.Half], x).get_period() == 2*pi # cos(sqrt(x))
|
|
assert meijerg(
|
|
[], [], [S.Half], [0], x).get_period() == 4*pi # sin(sqrt(x))
|
|
assert meijerg([1, 1], [], [1], [0], x).get_period() is oo # log(1 + x)
|
|
|
|
|
|
def test_hyper_unpolarify():
|
|
from sympy.functions.elementary.exponential import exp_polar
|
|
a = exp_polar(2*pi*I)*x
|
|
b = x
|
|
assert hyper([], [], a).argument == b
|
|
assert hyper([0], [], a).argument == a
|
|
assert hyper([0], [0], a).argument == b
|
|
assert hyper([0, 1], [0], a).argument == a
|
|
assert hyper([0, 1], [0], exp_polar(2*pi*I)).argument == 1
|
|
|
|
|
|
@slow
|
|
def test_hyperrep():
|
|
from sympy.functions.special.hyper import (HyperRep, HyperRep_atanh,
|
|
HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1,
|
|
HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2,
|
|
HyperRep_cosasin, HyperRep_sinasin)
|
|
# First test the base class works.
|
|
from sympy.functions.elementary.exponential import exp_polar
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
a, b, c, d, z = symbols('a b c d z')
|
|
|
|
class myrep(HyperRep):
|
|
@classmethod
|
|
def _expr_small(cls, x):
|
|
return a
|
|
|
|
@classmethod
|
|
def _expr_small_minus(cls, x):
|
|
return b
|
|
|
|
@classmethod
|
|
def _expr_big(cls, x, n):
|
|
return c*n
|
|
|
|
@classmethod
|
|
def _expr_big_minus(cls, x, n):
|
|
return d*n
|
|
assert myrep(z).rewrite('nonrep') == Piecewise((0, abs(z) > 1), (a, True))
|
|
assert myrep(exp_polar(I*pi)*z).rewrite('nonrep') == \
|
|
Piecewise((0, abs(z) > 1), (b, True))
|
|
assert myrep(exp_polar(2*I*pi)*z).rewrite('nonrep') == \
|
|
Piecewise((c, abs(z) > 1), (a, True))
|
|
assert myrep(exp_polar(3*I*pi)*z).rewrite('nonrep') == \
|
|
Piecewise((d, abs(z) > 1), (b, True))
|
|
assert myrep(exp_polar(4*I*pi)*z).rewrite('nonrep') == \
|
|
Piecewise((2*c, abs(z) > 1), (a, True))
|
|
assert myrep(exp_polar(5*I*pi)*z).rewrite('nonrep') == \
|
|
Piecewise((2*d, abs(z) > 1), (b, True))
|
|
assert myrep(z).rewrite('nonrepsmall') == a
|
|
assert myrep(exp_polar(I*pi)*z).rewrite('nonrepsmall') == b
|
|
|
|
def t(func, hyp, z):
|
|
""" Test that func is a valid representation of hyp. """
|
|
# First test that func agrees with hyp for small z
|
|
if not tn(func.rewrite('nonrepsmall'), hyp, z,
|
|
a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half):
|
|
return False
|
|
# Next check that the two small representations agree.
|
|
if not tn(
|
|
func.rewrite('nonrepsmall').subs(
|
|
z, exp_polar(I*pi)*z).replace(exp_polar, exp),
|
|
func.subs(z, exp_polar(I*pi)*z).rewrite('nonrepsmall'),
|
|
z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half):
|
|
return False
|
|
# Next check continuity along exp_polar(I*pi)*t
|
|
expr = func.subs(z, exp_polar(I*pi)*z).rewrite('nonrep')
|
|
if abs(expr.subs(z, 1 + 1e-15).n() - expr.subs(z, 1 - 1e-15).n()) > 1e-10:
|
|
return False
|
|
# Finally check continuity of the big reps.
|
|
|
|
def dosubs(func, a, b):
|
|
rv = func.subs(z, exp_polar(a)*z).rewrite('nonrep')
|
|
return rv.subs(z, exp_polar(b)*z).replace(exp_polar, exp)
|
|
for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]:
|
|
expr1 = dosubs(func, 2*I*pi*n, I*pi/2)
|
|
expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2)
|
|
if not tn(expr1, expr2, z):
|
|
return False
|
|
expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2)
|
|
expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2)
|
|
if not tn(expr1, expr2, z):
|
|
return False
|
|
return True
|
|
|
|
# Now test the various representatives.
|
|
a = Rational(1, 3)
|
|
assert t(HyperRep_atanh(z), hyper([S.Half, 1], [Rational(3, 2)], z), z)
|
|
assert t(HyperRep_power1(a, z), hyper([-a], [], z), z)
|
|
assert t(HyperRep_power2(a, z), hyper([a, a - S.Half], [2*a], z), z)
|
|
assert t(HyperRep_log1(z), -z*hyper([1, 1], [2], z), z)
|
|
assert t(HyperRep_asin1(z), hyper([S.Half, S.Half], [Rational(3, 2)], z), z)
|
|
assert t(HyperRep_asin2(z), hyper([1, 1], [Rational(3, 2)], z), z)
|
|
assert t(HyperRep_sqrts1(a, z), hyper([-a, S.Half - a], [S.Half], z), z)
|
|
assert t(HyperRep_sqrts2(a, z),
|
|
-2*z/(2*a + 1)*hyper([-a - S.Half, -a], [S.Half], z).diff(z), z)
|
|
assert t(HyperRep_log2(z), -z/4*hyper([Rational(3, 2), 1, 1], [2, 2], z), z)
|
|
assert t(HyperRep_cosasin(a, z), hyper([-a, a], [S.Half], z), z)
|
|
assert t(HyperRep_sinasin(a, z), 2*a*z*hyper([1 - a, 1 + a], [Rational(3, 2)], z), z)
|
|
|
|
|
|
@slow
|
|
def test_meijerg_eval():
|
|
from sympy.functions.elementary.exponential import exp_polar
|
|
from sympy.functions.special.bessel import besseli
|
|
from sympy.abc import l
|
|
a = randcplx()
|
|
arg = x*exp_polar(k*pi*I)
|
|
expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4)
|
|
expr2 = besseli(a, arg)
|
|
|
|
# Test that the two expressions agree for all arguments.
|
|
for x_ in [0.5, 1.5]:
|
|
for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]:
|
|
assert abs((expr1 - expr2).n(subs={x: x_, k: k_})) < 1e-10
|
|
assert abs((expr1 - expr2).n(subs={x: x_, k: -k_})) < 1e-10
|
|
|
|
# Test continuity independently
|
|
eps = 1e-13
|
|
expr2 = expr1.subs(k, l)
|
|
for x_ in [0.5, 1.5]:
|
|
for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]:
|
|
assert abs((expr1 - expr2).n(
|
|
subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10
|
|
assert abs((expr1 - expr2).n(
|
|
subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10
|
|
|
|
expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4)
|
|
+ meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \
|
|
/(2*sqrt(pi))
|
|
assert (expr - pi/exp(1)).n(chop=True) == 0
|
|
|
|
|
|
def test_limits():
|
|
k, x = symbols('k, x')
|
|
assert hyper((1,), (Rational(4, 3), Rational(5, 3)), k**2).series(k) == \
|
|
1 + 9*k**2/20 + 81*k**4/1120 + O(k**6) # issue 6350
|
|
|
|
# https://github.com/sympy/sympy/issues/11465
|
|
assert limit(1/hyper((1, ), (1, ), x), x, 0) == 1
|
|
|
|
|
|
def test_appellf1():
|
|
a, b1, b2, c, x, y = symbols('a b1 b2 c x y')
|
|
assert appellf1(a, b2, b1, c, y, x) == appellf1(a, b1, b2, c, x, y)
|
|
assert appellf1(a, b1, b1, c, y, x) == appellf1(a, b1, b1, c, x, y)
|
|
assert appellf1(a, b1, b2, c, S.Zero, S.Zero) is S.One
|
|
|
|
f = appellf1(a, b1, b2, c, S.Zero, S.Zero, evaluate=False)
|
|
assert f.func is appellf1
|
|
assert f.doit() is S.One
|
|
|
|
|
|
def test_derivative_appellf1():
|
|
from sympy.core.function import diff
|
|
a, b1, b2, c, x, y, z = symbols('a b1 b2 c x y z')
|
|
assert diff(appellf1(a, b1, b2, c, x, y), x) == a*b1*appellf1(a + 1, b2, b1 + 1, c + 1, y, x)/c
|
|
assert diff(appellf1(a, b1, b2, c, x, y), y) == a*b2*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)/c
|
|
assert diff(appellf1(a, b1, b2, c, x, y), z) == 0
|
|
assert diff(appellf1(a, b1, b2, c, x, y), a) == Derivative(appellf1(a, b1, b2, c, x, y), a)
|
|
|
|
|
|
def test_eval_nseries():
|
|
a1, b1, a2, b2 = symbols('a1 b1 a2 b2')
|
|
assert hyper((1,2), (1,2,3), x**2)._eval_nseries(x, 7, None) == 1 + x**2/3 + x**4/24 + x**6/360 + O(x**7)
|
|
assert exp(x)._eval_nseries(x,7,None) == hyper((a1, b1), (a1, b1), x)._eval_nseries(x, 7, None)
|
|
assert hyper((a1, a2), (b1, b2), x)._eval_nseries(z, 7, None) == hyper((a1, a2), (b1, b2), x) + O(z**7)
|