51 lines
1.6 KiB
Python
51 lines
1.6 KiB
Python
from math import prod
|
|
|
|
from sympy.core.numbers import Rational
|
|
from sympy.functions.elementary.exponential import exp
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.physics.quantum import Dagger, Commutator, qapply
|
|
from sympy.physics.quantum.boson import BosonOp
|
|
from sympy.physics.quantum.boson import (
|
|
BosonFockKet, BosonFockBra, BosonCoherentKet, BosonCoherentBra)
|
|
|
|
|
|
def test_bosonoperator():
|
|
a = BosonOp('a')
|
|
b = BosonOp('b')
|
|
|
|
assert isinstance(a, BosonOp)
|
|
assert isinstance(Dagger(a), BosonOp)
|
|
|
|
assert a.is_annihilation
|
|
assert not Dagger(a).is_annihilation
|
|
|
|
assert BosonOp("a") == BosonOp("a", True)
|
|
assert BosonOp("a") != BosonOp("c")
|
|
assert BosonOp("a", True) != BosonOp("a", False)
|
|
|
|
assert Commutator(a, Dagger(a)).doit() == 1
|
|
|
|
assert Commutator(a, Dagger(b)).doit() == a * Dagger(b) - Dagger(b) * a
|
|
|
|
assert Dagger(exp(a)) == exp(Dagger(a))
|
|
|
|
|
|
def test_boson_states():
|
|
a = BosonOp("a")
|
|
|
|
# Fock states
|
|
n = 3
|
|
assert (BosonFockBra(0) * BosonFockKet(1)).doit() == 0
|
|
assert (BosonFockBra(1) * BosonFockKet(1)).doit() == 1
|
|
assert qapply(BosonFockBra(n) * Dagger(a)**n * BosonFockKet(0)) \
|
|
== sqrt(prod(range(1, n+1)))
|
|
|
|
# Coherent states
|
|
alpha1, alpha2 = 1.2, 4.3
|
|
assert (BosonCoherentBra(alpha1) * BosonCoherentKet(alpha1)).doit() == 1
|
|
assert (BosonCoherentBra(alpha2) * BosonCoherentKet(alpha2)).doit() == 1
|
|
assert abs((BosonCoherentBra(alpha1) * BosonCoherentKet(alpha2)).doit() -
|
|
exp((alpha1 - alpha2) ** 2 * Rational(-1, 2))) < 1e-12
|
|
assert qapply(a * BosonCoherentKet(alpha1)) == \
|
|
alpha1 * BosonCoherentKet(alpha1)
|