504 lines
16 KiB
Python
504 lines
16 KiB
Python
from sympy.core import symbols, Symbol, Tuple, oo, Dummy
|
|
from sympy.tensor.indexed import IndexException
|
|
from sympy.testing.pytest import raises
|
|
from sympy.utilities.iterables import iterable
|
|
|
|
# import test:
|
|
from sympy.concrete.summations import Sum
|
|
from sympy.core.function import Function, Subs, Derivative
|
|
from sympy.core.relational import (StrictLessThan, GreaterThan,
|
|
StrictGreaterThan, LessThan)
|
|
from sympy.core.singleton import S
|
|
from sympy.functions.elementary.exponential import exp, log
|
|
from sympy.functions.elementary.trigonometric import cos, sin
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
|
from sympy.series.order import Order
|
|
from sympy.sets.fancysets import Range
|
|
from sympy.tensor.indexed import IndexedBase, Idx, Indexed
|
|
|
|
|
|
def test_Idx_construction():
|
|
i, a, b = symbols('i a b', integer=True)
|
|
assert Idx(i) != Idx(i, 1)
|
|
assert Idx(i, a) == Idx(i, (0, a - 1))
|
|
assert Idx(i, oo) == Idx(i, (0, oo))
|
|
|
|
x = symbols('x', integer=False)
|
|
raises(TypeError, lambda: Idx(x))
|
|
raises(TypeError, lambda: Idx(0.5))
|
|
raises(TypeError, lambda: Idx(i, x))
|
|
raises(TypeError, lambda: Idx(i, 0.5))
|
|
raises(TypeError, lambda: Idx(i, (x, 5)))
|
|
raises(TypeError, lambda: Idx(i, (2, x)))
|
|
raises(TypeError, lambda: Idx(i, (2, 3.5)))
|
|
|
|
|
|
def test_Idx_properties():
|
|
i, a, b = symbols('i a b', integer=True)
|
|
assert Idx(i).is_integer
|
|
assert Idx(i).name == 'i'
|
|
assert Idx(i + 2).name == 'i + 2'
|
|
assert Idx('foo').name == 'foo'
|
|
|
|
|
|
def test_Idx_bounds():
|
|
i, a, b = symbols('i a b', integer=True)
|
|
assert Idx(i).lower is None
|
|
assert Idx(i).upper is None
|
|
assert Idx(i, a).lower == 0
|
|
assert Idx(i, a).upper == a - 1
|
|
assert Idx(i, 5).lower == 0
|
|
assert Idx(i, 5).upper == 4
|
|
assert Idx(i, oo).lower == 0
|
|
assert Idx(i, oo).upper is oo
|
|
assert Idx(i, (a, b)).lower == a
|
|
assert Idx(i, (a, b)).upper == b
|
|
assert Idx(i, (1, 5)).lower == 1
|
|
assert Idx(i, (1, 5)).upper == 5
|
|
assert Idx(i, (-oo, oo)).lower is -oo
|
|
assert Idx(i, (-oo, oo)).upper is oo
|
|
|
|
|
|
def test_Idx_fixed_bounds():
|
|
i, a, b, x = symbols('i a b x', integer=True)
|
|
assert Idx(x).lower is None
|
|
assert Idx(x).upper is None
|
|
assert Idx(x, a).lower == 0
|
|
assert Idx(x, a).upper == a - 1
|
|
assert Idx(x, 5).lower == 0
|
|
assert Idx(x, 5).upper == 4
|
|
assert Idx(x, oo).lower == 0
|
|
assert Idx(x, oo).upper is oo
|
|
assert Idx(x, (a, b)).lower == a
|
|
assert Idx(x, (a, b)).upper == b
|
|
assert Idx(x, (1, 5)).lower == 1
|
|
assert Idx(x, (1, 5)).upper == 5
|
|
assert Idx(x, (-oo, oo)).lower is -oo
|
|
assert Idx(x, (-oo, oo)).upper is oo
|
|
|
|
|
|
def test_Idx_inequalities():
|
|
i14 = Idx("i14", (1, 4))
|
|
i79 = Idx("i79", (7, 9))
|
|
i46 = Idx("i46", (4, 6))
|
|
i35 = Idx("i35", (3, 5))
|
|
|
|
assert i14 <= 5
|
|
assert i14 < 5
|
|
assert not (i14 >= 5)
|
|
assert not (i14 > 5)
|
|
|
|
assert 5 >= i14
|
|
assert 5 > i14
|
|
assert not (5 <= i14)
|
|
assert not (5 < i14)
|
|
|
|
assert LessThan(i14, 5)
|
|
assert StrictLessThan(i14, 5)
|
|
assert not GreaterThan(i14, 5)
|
|
assert not StrictGreaterThan(i14, 5)
|
|
|
|
assert i14 <= 4
|
|
assert isinstance(i14 < 4, StrictLessThan)
|
|
assert isinstance(i14 >= 4, GreaterThan)
|
|
assert not (i14 > 4)
|
|
|
|
assert isinstance(i14 <= 1, LessThan)
|
|
assert not (i14 < 1)
|
|
assert i14 >= 1
|
|
assert isinstance(i14 > 1, StrictGreaterThan)
|
|
|
|
assert not (i14 <= 0)
|
|
assert not (i14 < 0)
|
|
assert i14 >= 0
|
|
assert i14 > 0
|
|
|
|
from sympy.abc import x
|
|
|
|
assert isinstance(i14 < x, StrictLessThan)
|
|
assert isinstance(i14 > x, StrictGreaterThan)
|
|
assert isinstance(i14 <= x, LessThan)
|
|
assert isinstance(i14 >= x, GreaterThan)
|
|
|
|
assert i14 < i79
|
|
assert i14 <= i79
|
|
assert not (i14 > i79)
|
|
assert not (i14 >= i79)
|
|
|
|
assert i14 <= i46
|
|
assert isinstance(i14 < i46, StrictLessThan)
|
|
assert isinstance(i14 >= i46, GreaterThan)
|
|
assert not (i14 > i46)
|
|
|
|
assert isinstance(i14 < i35, StrictLessThan)
|
|
assert isinstance(i14 > i35, StrictGreaterThan)
|
|
assert isinstance(i14 <= i35, LessThan)
|
|
assert isinstance(i14 >= i35, GreaterThan)
|
|
|
|
iNone1 = Idx("iNone1")
|
|
iNone2 = Idx("iNone2")
|
|
|
|
assert isinstance(iNone1 < iNone2, StrictLessThan)
|
|
assert isinstance(iNone1 > iNone2, StrictGreaterThan)
|
|
assert isinstance(iNone1 <= iNone2, LessThan)
|
|
assert isinstance(iNone1 >= iNone2, GreaterThan)
|
|
|
|
|
|
def test_Idx_inequalities_current_fails():
|
|
i14 = Idx("i14", (1, 4))
|
|
|
|
assert S(5) >= i14
|
|
assert S(5) > i14
|
|
assert not (S(5) <= i14)
|
|
assert not (S(5) < i14)
|
|
|
|
|
|
def test_Idx_func_args():
|
|
i, a, b = symbols('i a b', integer=True)
|
|
ii = Idx(i)
|
|
assert ii.func(*ii.args) == ii
|
|
ii = Idx(i, a)
|
|
assert ii.func(*ii.args) == ii
|
|
ii = Idx(i, (a, b))
|
|
assert ii.func(*ii.args) == ii
|
|
|
|
|
|
def test_Idx_subs():
|
|
i, a, b = symbols('i a b', integer=True)
|
|
assert Idx(i, a).subs(a, b) == Idx(i, b)
|
|
assert Idx(i, a).subs(i, b) == Idx(b, a)
|
|
|
|
assert Idx(i).subs(i, 2) == Idx(2)
|
|
assert Idx(i, a).subs(a, 2) == Idx(i, 2)
|
|
assert Idx(i, (a, b)).subs(i, 2) == Idx(2, (a, b))
|
|
|
|
|
|
def test_IndexedBase_sugar():
|
|
i, j = symbols('i j', integer=True)
|
|
a = symbols('a')
|
|
A1 = Indexed(a, i, j)
|
|
A2 = IndexedBase(a)
|
|
assert A1 == A2[i, j]
|
|
assert A1 == A2[(i, j)]
|
|
assert A1 == A2[[i, j]]
|
|
assert A1 == A2[Tuple(i, j)]
|
|
assert all(a.is_Integer for a in A2[1, 0].args[1:])
|
|
|
|
|
|
def test_IndexedBase_subs():
|
|
i = symbols('i', integer=True)
|
|
a, b = symbols('a b')
|
|
A = IndexedBase(a)
|
|
B = IndexedBase(b)
|
|
assert A[i] == B[i].subs(b, a)
|
|
C = {1: 2}
|
|
assert C[1] == A[1].subs(A, C)
|
|
|
|
|
|
def test_IndexedBase_shape():
|
|
i, j, m, n = symbols('i j m n', integer=True)
|
|
a = IndexedBase('a', shape=(m, m))
|
|
b = IndexedBase('a', shape=(m, n))
|
|
assert b.shape == Tuple(m, n)
|
|
assert a[i, j] != b[i, j]
|
|
assert a[i, j] == b[i, j].subs(n, m)
|
|
assert b.func(*b.args) == b
|
|
assert b[i, j].func(*b[i, j].args) == b[i, j]
|
|
raises(IndexException, lambda: b[i])
|
|
raises(IndexException, lambda: b[i, i, j])
|
|
F = IndexedBase("F", shape=m)
|
|
assert F.shape == Tuple(m)
|
|
assert F[i].subs(i, j) == F[j]
|
|
raises(IndexException, lambda: F[i, j])
|
|
|
|
|
|
def test_IndexedBase_assumptions():
|
|
i = Symbol('i', integer=True)
|
|
a = Symbol('a')
|
|
A = IndexedBase(a, positive=True)
|
|
for c in (A, A[i]):
|
|
assert c.is_real
|
|
assert c.is_complex
|
|
assert not c.is_imaginary
|
|
assert c.is_nonnegative
|
|
assert c.is_nonzero
|
|
assert c.is_commutative
|
|
assert log(exp(c)) == c
|
|
|
|
assert A != IndexedBase(a)
|
|
assert A == IndexedBase(a, positive=True, real=True)
|
|
assert A[i] != Indexed(a, i)
|
|
|
|
|
|
def test_IndexedBase_assumptions_inheritance():
|
|
I = Symbol('I', integer=True)
|
|
I_inherit = IndexedBase(I)
|
|
I_explicit = IndexedBase('I', integer=True)
|
|
|
|
assert I_inherit.is_integer
|
|
assert I_explicit.is_integer
|
|
assert I_inherit.label.is_integer
|
|
assert I_explicit.label.is_integer
|
|
assert I_inherit == I_explicit
|
|
|
|
|
|
def test_issue_17652():
|
|
"""Regression test issue #17652.
|
|
|
|
IndexedBase.label should not upcast subclasses of Symbol
|
|
"""
|
|
class SubClass(Symbol):
|
|
pass
|
|
|
|
x = SubClass('X')
|
|
assert type(x) == SubClass
|
|
base = IndexedBase(x)
|
|
assert type(x) == SubClass
|
|
assert type(base.label) == SubClass
|
|
|
|
|
|
def test_Indexed_constructor():
|
|
i, j = symbols('i j', integer=True)
|
|
A = Indexed('A', i, j)
|
|
assert A == Indexed(Symbol('A'), i, j)
|
|
assert A == Indexed(IndexedBase('A'), i, j)
|
|
raises(TypeError, lambda: Indexed(A, i, j))
|
|
raises(IndexException, lambda: Indexed("A"))
|
|
assert A.free_symbols == {A, A.base.label, i, j}
|
|
|
|
|
|
def test_Indexed_func_args():
|
|
i, j = symbols('i j', integer=True)
|
|
a = symbols('a')
|
|
A = Indexed(a, i, j)
|
|
assert A == A.func(*A.args)
|
|
|
|
|
|
def test_Indexed_subs():
|
|
i, j, k = symbols('i j k', integer=True)
|
|
a, b = symbols('a b')
|
|
A = IndexedBase(a)
|
|
B = IndexedBase(b)
|
|
assert A[i, j] == B[i, j].subs(b, a)
|
|
assert A[i, j] == A[i, k].subs(k, j)
|
|
|
|
|
|
def test_Indexed_properties():
|
|
i, j = symbols('i j', integer=True)
|
|
A = Indexed('A', i, j)
|
|
assert A.name == 'A[i, j]'
|
|
assert A.rank == 2
|
|
assert A.indices == (i, j)
|
|
assert A.base == IndexedBase('A')
|
|
assert A.ranges == [None, None]
|
|
raises(IndexException, lambda: A.shape)
|
|
|
|
n, m = symbols('n m', integer=True)
|
|
assert Indexed('A', Idx(
|
|
i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)]
|
|
assert Indexed('A', Idx(i, m), Idx(j, n)).shape == Tuple(m, n)
|
|
raises(IndexException, lambda: Indexed("A", Idx(i, m), Idx(j)).shape)
|
|
|
|
|
|
def test_Indexed_shape_precedence():
|
|
i, j = symbols('i j', integer=True)
|
|
o, p = symbols('o p', integer=True)
|
|
n, m = symbols('n m', integer=True)
|
|
a = IndexedBase('a', shape=(o, p))
|
|
assert a.shape == Tuple(o, p)
|
|
assert Indexed(
|
|
a, Idx(i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)]
|
|
assert Indexed(a, Idx(i, m), Idx(j, n)).shape == Tuple(o, p)
|
|
assert Indexed(
|
|
a, Idx(i, m), Idx(j)).ranges == [Tuple(0, m - 1), (None, None)]
|
|
assert Indexed(a, Idx(i, m), Idx(j)).shape == Tuple(o, p)
|
|
|
|
|
|
def test_complex_indices():
|
|
i, j = symbols('i j', integer=True)
|
|
A = Indexed('A', i, i + j)
|
|
assert A.rank == 2
|
|
assert A.indices == (i, i + j)
|
|
|
|
|
|
def test_not_interable():
|
|
i, j = symbols('i j', integer=True)
|
|
A = Indexed('A', i, i + j)
|
|
assert not iterable(A)
|
|
|
|
|
|
def test_Indexed_coeff():
|
|
N = Symbol('N', integer=True)
|
|
len_y = N
|
|
i = Idx('i', len_y-1)
|
|
y = IndexedBase('y', shape=(len_y,))
|
|
a = (1/y[i+1]*y[i]).coeff(y[i])
|
|
b = (y[i]/y[i+1]).coeff(y[i])
|
|
assert a == b
|
|
|
|
|
|
def test_differentiation():
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
|
i, j, k, l = symbols('i j k l', cls=Idx)
|
|
a = symbols('a')
|
|
m, n = symbols("m, n", integer=True, finite=True)
|
|
assert m.is_real
|
|
h, L = symbols('h L', cls=IndexedBase)
|
|
hi, hj = h[i], h[j]
|
|
|
|
expr = hi
|
|
assert expr.diff(hj) == KroneckerDelta(i, j)
|
|
assert expr.diff(hi) == KroneckerDelta(i, i)
|
|
|
|
expr = S(2) * hi
|
|
assert expr.diff(hj) == S(2) * KroneckerDelta(i, j)
|
|
assert expr.diff(hi) == S(2) * KroneckerDelta(i, i)
|
|
assert expr.diff(a) is S.Zero
|
|
|
|
assert Sum(expr, (i, -oo, oo)).diff(hj) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo))
|
|
assert Sum(expr.diff(hj), (i, -oo, oo)) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo))
|
|
assert Sum(expr, (i, -oo, oo)).diff(hj).doit() == 2
|
|
|
|
assert Sum(expr.diff(hi), (i, -oo, oo)).doit() == Sum(2, (i, -oo, oo)).doit()
|
|
assert Sum(expr, (i, -oo, oo)).diff(hi).doit() is oo
|
|
|
|
expr = a * hj * hj / S(2)
|
|
assert expr.diff(hi) == a * h[j] * KroneckerDelta(i, j)
|
|
assert expr.diff(a) == hj * hj / S(2)
|
|
assert expr.diff(a, 2) is S.Zero
|
|
|
|
assert Sum(expr, (i, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo))
|
|
assert Sum(expr.diff(hi), (i, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo))
|
|
assert Sum(expr, (i, -oo, oo)).diff(hi).doit() == a*h[j]
|
|
|
|
assert Sum(expr, (j, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo))
|
|
assert Sum(expr.diff(hi), (j, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo))
|
|
assert Sum(expr, (j, -oo, oo)).diff(hi).doit() == a*h[i]
|
|
|
|
expr = a * sin(hj * hj)
|
|
assert expr.diff(hi) == 2*a*cos(hj * hj) * hj * KroneckerDelta(i, j)
|
|
assert expr.diff(hj) == 2*a*cos(hj * hj) * hj
|
|
|
|
expr = a * L[i, j] * h[j]
|
|
assert expr.diff(hi) == a*L[i, j]*KroneckerDelta(i, j)
|
|
assert expr.diff(hj) == a*L[i, j]
|
|
assert expr.diff(L[i, j]) == a*h[j]
|
|
assert expr.diff(L[k, l]) == a*KroneckerDelta(i, k)*KroneckerDelta(j, l)*h[j]
|
|
assert expr.diff(L[i, l]) == a*KroneckerDelta(j, l)*h[j]
|
|
|
|
assert Sum(expr, (j, -oo, oo)).diff(L[k, l]) == Sum(a * KroneckerDelta(i, k) * KroneckerDelta(j, l) * h[j], (j, -oo, oo))
|
|
assert Sum(expr, (j, -oo, oo)).diff(L[k, l]).doit() == a * KroneckerDelta(i, k) * h[l]
|
|
|
|
assert h[m].diff(h[m]) == 1
|
|
assert h[m].diff(h[n]) == KroneckerDelta(m, n)
|
|
assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (m, -oo, oo))
|
|
assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]).doit() == a
|
|
assert Sum(a*h[m], (n, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (n, -oo, oo))
|
|
assert Sum(a*h[m], (m, -oo, oo)).diff(h[m]).doit() == oo*a
|
|
|
|
|
|
def test_indexed_series():
|
|
A = IndexedBase("A")
|
|
i = symbols("i", integer=True)
|
|
assert sin(A[i]).series(A[i]) == A[i] - A[i]**3/6 + A[i]**5/120 + Order(A[i]**6, A[i])
|
|
|
|
|
|
def test_indexed_is_constant():
|
|
A = IndexedBase("A")
|
|
i, j, k = symbols("i,j,k")
|
|
assert not A[i].is_constant()
|
|
assert A[i].is_constant(j)
|
|
assert not A[1+2*i, k].is_constant()
|
|
assert not A[1+2*i, k].is_constant(i)
|
|
assert A[1+2*i, k].is_constant(j)
|
|
assert not A[1+2*i, k].is_constant(k)
|
|
|
|
|
|
def test_issue_12533():
|
|
d = IndexedBase('d')
|
|
assert IndexedBase(range(5)) == Range(0, 5, 1)
|
|
assert d[0].subs(Symbol("d"), range(5)) == 0
|
|
assert d[0].subs(d, range(5)) == 0
|
|
assert d[1].subs(d, range(5)) == 1
|
|
assert Indexed(Range(5), 2) == 2
|
|
|
|
|
|
def test_issue_12780():
|
|
n = symbols("n")
|
|
i = Idx("i", (0, n))
|
|
raises(TypeError, lambda: i.subs(n, 1.5))
|
|
|
|
|
|
def test_issue_18604():
|
|
m = symbols("m")
|
|
assert Idx("i", m).name == 'i'
|
|
assert Idx("i", m).lower == 0
|
|
assert Idx("i", m).upper == m - 1
|
|
m = symbols("m", real=False)
|
|
raises(TypeError, lambda: Idx("i", m))
|
|
|
|
def test_Subs_with_Indexed():
|
|
A = IndexedBase("A")
|
|
i, j, k = symbols("i,j,k")
|
|
x, y, z = symbols("x,y,z")
|
|
f = Function("f")
|
|
|
|
assert Subs(A[i], A[i], A[j]).diff(A[j]) == 1
|
|
assert Subs(A[i], A[i], x).diff(A[i]) == 0
|
|
assert Subs(A[i], A[i], x).diff(A[j]) == 0
|
|
assert Subs(A[i], A[i], x).diff(x) == 1
|
|
assert Subs(A[i], A[i], x).diff(y) == 0
|
|
assert Subs(A[i], A[i], A[j]).diff(A[k]) == KroneckerDelta(j, k)
|
|
assert Subs(x, x, A[i]).diff(A[j]) == KroneckerDelta(i, j)
|
|
assert Subs(f(A[i]), A[i], x).diff(A[j]) == 0
|
|
assert Subs(f(A[i]), A[i], A[k]).diff(A[j]) == Derivative(f(A[k]), A[k])*KroneckerDelta(j, k)
|
|
assert Subs(x, x, A[i]**2).diff(A[j]) == 2*KroneckerDelta(i, j)*A[i]
|
|
assert Subs(A[i], A[i], A[j]**2).diff(A[k]) == 2*KroneckerDelta(j, k)*A[j]
|
|
|
|
assert Subs(A[i]*x, x, A[i]).diff(A[i]) == 2*A[i]
|
|
assert Subs(A[i]*x, x, A[i]).diff(A[j]) == 2*A[i]*KroneckerDelta(i, j)
|
|
assert Subs(A[i]*x, x, A[j]).diff(A[i]) == A[j] + A[i]*KroneckerDelta(i, j)
|
|
assert Subs(A[i]*x, x, A[j]).diff(A[j]) == A[i] + A[j]*KroneckerDelta(i, j)
|
|
assert Subs(A[i]*x, x, A[i]).diff(A[k]) == 2*A[i]*KroneckerDelta(i, k)
|
|
assert Subs(A[i]*x, x, A[j]).diff(A[k]) == KroneckerDelta(i, k)*A[j] + KroneckerDelta(j, k)*A[i]
|
|
|
|
assert Subs(A[i]*x, A[i], x).diff(A[i]) == 0
|
|
assert Subs(A[i]*x, A[i], x).diff(A[j]) == 0
|
|
assert Subs(A[i]*x, A[j], x).diff(A[i]) == x
|
|
assert Subs(A[i]*x, A[j], x).diff(A[j]) == x*KroneckerDelta(i, j)
|
|
assert Subs(A[i]*x, A[i], x).diff(A[k]) == 0
|
|
assert Subs(A[i]*x, A[j], x).diff(A[k]) == x*KroneckerDelta(i, k)
|
|
|
|
|
|
def test_complicated_derivative_with_Indexed():
|
|
x, y = symbols("x,y", cls=IndexedBase)
|
|
sigma = symbols("sigma")
|
|
i, j, k = symbols("i,j,k")
|
|
m0,m1,m2,m3,m4,m5 = symbols("m0:6")
|
|
f = Function("f")
|
|
|
|
expr = f((x[i] - y[i])**2/sigma)
|
|
_xi_1 = symbols("xi_1", cls=Dummy)
|
|
assert expr.diff(x[m0]).dummy_eq(
|
|
(x[i] - y[i])*KroneckerDelta(i, m0)*\
|
|
2*Subs(
|
|
Derivative(f(_xi_1), _xi_1),
|
|
(_xi_1,),
|
|
((x[i] - y[i])**2/sigma,)
|
|
)/sigma
|
|
)
|
|
assert expr.diff(x[m0]).diff(x[m1]).dummy_eq(
|
|
2*KroneckerDelta(i, m0)*\
|
|
KroneckerDelta(i, m1)*Subs(
|
|
Derivative(f(_xi_1), _xi_1),
|
|
(_xi_1,),
|
|
((x[i] - y[i])**2/sigma,)
|
|
)/sigma + \
|
|
4*(x[i] - y[i])**2*KroneckerDelta(i, m0)*KroneckerDelta(i, m1)*\
|
|
Subs(
|
|
Derivative(f(_xi_1), _xi_1, _xi_1),
|
|
(_xi_1,),
|
|
((x[i] - y[i])**2/sigma,)
|
|
)/sigma**2
|
|
)
|