46 lines
1.6 KiB
Python
46 lines
1.6 KiB
Python
import torch
|
|
from torch.fx._symbolic_trace import Tracer
|
|
from torch.fx.proxy import Scope
|
|
from torch.ao.nn.intrinsic import _FusedModule
|
|
from typing import List, Callable
|
|
|
|
__all__ = [
|
|
"QuantizationTracer",
|
|
]
|
|
|
|
class ScopeContextManager(torch.fx.proxy.ScopeContextManager):
|
|
def __init__(
|
|
self,
|
|
scope: Scope,
|
|
current_module: torch.nn.Module,
|
|
current_module_path: str
|
|
):
|
|
super().__init__(scope, Scope(current_module_path, type(current_module)))
|
|
|
|
|
|
class QuantizationTracer(Tracer):
|
|
def __init__(
|
|
self, skipped_module_names: List[str], skipped_module_classes: List[Callable]
|
|
):
|
|
super().__init__()
|
|
self.skipped_module_names = skipped_module_names
|
|
self.skipped_module_classes = skipped_module_classes
|
|
# NB: initialized the module_type of top level module to None
|
|
# we are assuming people won't configure the model with the type of top level
|
|
# module here, since people can use "" for global config
|
|
# We can change this if there is a use case that configures
|
|
# qconfig using top level module type
|
|
self.scope = Scope("", None)
|
|
self.record_stack_traces = True
|
|
|
|
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
|
|
return (
|
|
(
|
|
(m.__module__.startswith("torch.nn") or m.__module__.startswith("torch.ao.nn"))
|
|
and not isinstance(m, torch.nn.Sequential)
|
|
)
|
|
or module_qualified_name in self.skipped_module_names
|
|
or type(m) in self.skipped_module_classes
|
|
or isinstance(m, _FusedModule)
|
|
)
|