619 lines
18 KiB
C++
619 lines
18 KiB
C++
#pragma once
|
|
|
|
#include <complex>
|
|
|
|
#include <c10/macros/Macros.h>
|
|
|
|
#if defined(__CUDACC__) || defined(__HIPCC__)
|
|
#include <thrust/complex.h>
|
|
#endif
|
|
|
|
C10_CLANG_DIAGNOSTIC_PUSH()
|
|
#if C10_CLANG_HAS_WARNING("-Wimplicit-float-conversion")
|
|
C10_CLANG_DIAGNOSTIC_IGNORE("-Wimplicit-float-conversion")
|
|
#endif
|
|
#if C10_CLANG_HAS_WARNING("-Wfloat-conversion")
|
|
C10_CLANG_DIAGNOSTIC_IGNORE("-Wfloat-conversion")
|
|
#endif
|
|
|
|
namespace c10 {
|
|
|
|
// c10::complex is an implementation of complex numbers that aims
|
|
// to work on all devices supported by PyTorch
|
|
//
|
|
// Most of the APIs duplicates std::complex
|
|
// Reference: https://en.cppreference.com/w/cpp/numeric/complex
|
|
//
|
|
// [NOTE: Complex Operator Unification]
|
|
// Operators currently use a mix of std::complex, thrust::complex, and
|
|
// c10::complex internally. The end state is that all operators will use
|
|
// c10::complex internally. Until then, there may be some hacks to support all
|
|
// variants.
|
|
//
|
|
//
|
|
// [Note on Constructors]
|
|
//
|
|
// The APIs of constructors are mostly copied from C++ standard:
|
|
// https://en.cppreference.com/w/cpp/numeric/complex/complex
|
|
//
|
|
// Since C++14, all constructors are constexpr in std::complex
|
|
//
|
|
// There are three types of constructors:
|
|
// - initializing from real and imag:
|
|
// `constexpr complex( const T& re = T(), const T& im = T() );`
|
|
// - implicitly-declared copy constructor
|
|
// - converting constructors
|
|
//
|
|
// Converting constructors:
|
|
// - std::complex defines converting constructor between float/double/long
|
|
// double,
|
|
// while we define converting constructor between float/double.
|
|
// - For these converting constructors, upcasting is implicit, downcasting is
|
|
// explicit.
|
|
// - We also define explicit casting from std::complex/thrust::complex
|
|
// - Note that the conversion from thrust is not constexpr, because
|
|
// thrust does not define them as constexpr ????
|
|
//
|
|
//
|
|
// [Operator =]
|
|
//
|
|
// The APIs of operator = are mostly copied from C++ standard:
|
|
// https://en.cppreference.com/w/cpp/numeric/complex/operator%3D
|
|
//
|
|
// Since C++20, all operator= are constexpr. Although we are not building with
|
|
// C++20, we also obey this behavior.
|
|
//
|
|
// There are three types of assign operator:
|
|
// - Assign a real value from the same scalar type
|
|
// - In std, this is templated as complex& operator=(const T& x)
|
|
// with specialization `complex& operator=(T x)` for float/double/long
|
|
// double Since we only support float and double, on will use `complex&
|
|
// operator=(T x)`
|
|
// - Copy assignment operator and converting assignment operator
|
|
// - There is no specialization of converting assignment operators, which type
|
|
// is
|
|
// convertible is solely dependent on whether the scalar type is convertible
|
|
//
|
|
// In addition to the standard assignment, we also provide assignment operators
|
|
// with std and thrust
|
|
//
|
|
//
|
|
// [Casting operators]
|
|
//
|
|
// std::complex does not have casting operators. We define casting operators
|
|
// casting to std::complex and thrust::complex
|
|
//
|
|
//
|
|
// [Operator ""]
|
|
//
|
|
// std::complex has custom literals `i`, `if` and `il` defined in namespace
|
|
// `std::literals::complex_literals`. We define our own custom literals in the
|
|
// namespace `c10::complex_literals`. Our custom literals does not follow the
|
|
// same behavior as in std::complex, instead, we define _if, _id to construct
|
|
// float/double complex literals.
|
|
//
|
|
//
|
|
// [real() and imag()]
|
|
//
|
|
// In C++20, there are two overload of these functions, one it to return the
|
|
// real/imag, another is to set real/imag, they are both constexpr. We follow
|
|
// this design.
|
|
//
|
|
//
|
|
// [Operator +=,-=,*=,/=]
|
|
//
|
|
// Since C++20, these operators become constexpr. In our implementation, they
|
|
// are also constexpr.
|
|
//
|
|
// There are two types of such operators: operating with a real number, or
|
|
// operating with another complex number. For the operating with a real number,
|
|
// the generic template form has argument type `const T &`, while the overload
|
|
// for float/double/long double has `T`. We will follow the same type as
|
|
// float/double/long double in std.
|
|
//
|
|
// [Unary operator +-]
|
|
//
|
|
// Since C++20, they are constexpr. We also make them expr
|
|
//
|
|
// [Binary operators +-*/]
|
|
//
|
|
// Each operator has three versions (taking + as example):
|
|
// - complex + complex
|
|
// - complex + real
|
|
// - real + complex
|
|
//
|
|
// [Operator ==, !=]
|
|
//
|
|
// Each operator has three versions (taking == as example):
|
|
// - complex == complex
|
|
// - complex == real
|
|
// - real == complex
|
|
//
|
|
// Some of them are removed on C++20, but we decide to keep them
|
|
//
|
|
// [Operator <<, >>]
|
|
//
|
|
// These are implemented by casting to std::complex
|
|
//
|
|
//
|
|
//
|
|
// TODO(@zasdfgbnm): c10::complex<c10::Half> is not currently supported,
|
|
// because:
|
|
// - lots of members and functions of c10::Half are not constexpr
|
|
// - thrust::complex only support float and double
|
|
|
|
template <typename T>
|
|
struct alignas(sizeof(T) * 2) complex {
|
|
using value_type = T;
|
|
|
|
T real_ = T(0);
|
|
T imag_ = T(0);
|
|
|
|
constexpr complex() = default;
|
|
C10_HOST_DEVICE constexpr complex(const T& re, const T& im = T())
|
|
: real_(re), imag_(im) {}
|
|
template <typename U>
|
|
explicit constexpr complex(const std::complex<U>& other)
|
|
: complex(other.real(), other.imag()) {}
|
|
#if defined(__CUDACC__) || defined(__HIPCC__)
|
|
template <typename U>
|
|
explicit C10_HOST_DEVICE complex(const thrust::complex<U>& other)
|
|
: real_(other.real()), imag_(other.imag()) {}
|
|
// NOTE can not be implemented as follow due to ROCm bug:
|
|
// explicit C10_HOST_DEVICE complex(const thrust::complex<U> &other):
|
|
// complex(other.real(), other.imag()) {}
|
|
#endif
|
|
|
|
// Use SFINAE to specialize casting constructor for c10::complex<float> and
|
|
// c10::complex<double>
|
|
template <typename U = T>
|
|
C10_HOST_DEVICE explicit constexpr complex(
|
|
const std::enable_if_t<std::is_same_v<U, float>, complex<double>>& other)
|
|
: real_(other.real_), imag_(other.imag_) {}
|
|
template <typename U = T>
|
|
C10_HOST_DEVICE constexpr complex(
|
|
const std::enable_if_t<std::is_same_v<U, double>, complex<float>>& other)
|
|
: real_(other.real_), imag_(other.imag_) {}
|
|
|
|
constexpr complex<T>& operator=(T re) {
|
|
real_ = re;
|
|
imag_ = 0;
|
|
return *this;
|
|
}
|
|
|
|
constexpr complex<T>& operator+=(T re) {
|
|
real_ += re;
|
|
return *this;
|
|
}
|
|
|
|
constexpr complex<T>& operator-=(T re) {
|
|
real_ -= re;
|
|
return *this;
|
|
}
|
|
|
|
constexpr complex<T>& operator*=(T re) {
|
|
real_ *= re;
|
|
imag_ *= re;
|
|
return *this;
|
|
}
|
|
|
|
constexpr complex<T>& operator/=(T re) {
|
|
real_ /= re;
|
|
imag_ /= re;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
constexpr complex<T>& operator=(const complex<U>& rhs) {
|
|
real_ = rhs.real();
|
|
imag_ = rhs.imag();
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
constexpr complex<T>& operator+=(const complex<U>& rhs) {
|
|
real_ += rhs.real();
|
|
imag_ += rhs.imag();
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
constexpr complex<T>& operator-=(const complex<U>& rhs) {
|
|
real_ -= rhs.real();
|
|
imag_ -= rhs.imag();
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
constexpr complex<T>& operator*=(const complex<U>& rhs) {
|
|
// (a + bi) * (c + di) = (a*c - b*d) + (a * d + b * c) i
|
|
T a = real_;
|
|
T b = imag_;
|
|
U c = rhs.real();
|
|
U d = rhs.imag();
|
|
real_ = a * c - b * d;
|
|
imag_ = a * d + b * c;
|
|
return *this;
|
|
}
|
|
|
|
#ifdef __APPLE__
|
|
#define FORCE_INLINE_APPLE __attribute__((always_inline))
|
|
#else
|
|
#define FORCE_INLINE_APPLE
|
|
#endif
|
|
template <typename U>
|
|
constexpr FORCE_INLINE_APPLE complex<T>& operator/=(const complex<U>& rhs)
|
|
__ubsan_ignore_float_divide_by_zero__ {
|
|
// (a + bi) / (c + di) = (ac + bd)/(c^2 + d^2) + (bc - ad)/(c^2 + d^2) i
|
|
// the calculation below follows numpy's complex division
|
|
T a = real_;
|
|
T b = imag_;
|
|
U c = rhs.real();
|
|
U d = rhs.imag();
|
|
|
|
#if defined(__GNUC__) && !defined(__clang__)
|
|
// std::abs is already constexpr by gcc
|
|
auto abs_c = std::abs(c);
|
|
auto abs_d = std::abs(d);
|
|
#else
|
|
auto abs_c = c < 0 ? -c : c;
|
|
auto abs_d = d < 0 ? -d : d;
|
|
#endif
|
|
|
|
if (abs_c >= abs_d) {
|
|
if (abs_c == 0 && abs_d == 0) {
|
|
/* divide by zeros should yield a complex inf or nan */
|
|
real_ = a / abs_c;
|
|
imag_ = b / abs_d;
|
|
} else {
|
|
auto rat = d / c;
|
|
auto scl = 1.0 / (c + d * rat);
|
|
real_ = (a + b * rat) * scl;
|
|
imag_ = (b - a * rat) * scl;
|
|
}
|
|
} else {
|
|
auto rat = c / d;
|
|
auto scl = 1.0 / (d + c * rat);
|
|
real_ = (a * rat + b) * scl;
|
|
imag_ = (b * rat - a) * scl;
|
|
}
|
|
return *this;
|
|
}
|
|
#undef FORCE_INLINE_APPLE
|
|
|
|
template <typename U>
|
|
constexpr complex<T>& operator=(const std::complex<U>& rhs) {
|
|
real_ = rhs.real();
|
|
imag_ = rhs.imag();
|
|
return *this;
|
|
}
|
|
|
|
#if defined(__CUDACC__) || defined(__HIPCC__)
|
|
template <typename U>
|
|
C10_HOST_DEVICE complex<T>& operator=(const thrust::complex<U>& rhs) {
|
|
real_ = rhs.real();
|
|
imag_ = rhs.imag();
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
template <typename U>
|
|
explicit constexpr operator std::complex<U>() const {
|
|
return std::complex<U>(std::complex<T>(real(), imag()));
|
|
}
|
|
|
|
#if defined(__CUDACC__) || defined(__HIPCC__)
|
|
template <typename U>
|
|
C10_HOST_DEVICE explicit operator thrust::complex<U>() const {
|
|
return static_cast<thrust::complex<U>>(thrust::complex<T>(real(), imag()));
|
|
}
|
|
#endif
|
|
|
|
// consistent with NumPy behavior
|
|
explicit constexpr operator bool() const {
|
|
return real() || imag();
|
|
}
|
|
|
|
C10_HOST_DEVICE constexpr T real() const {
|
|
return real_;
|
|
}
|
|
constexpr void real(T value) {
|
|
real_ = value;
|
|
}
|
|
C10_HOST_DEVICE constexpr T imag() const {
|
|
return imag_;
|
|
}
|
|
constexpr void imag(T value) {
|
|
imag_ = value;
|
|
}
|
|
};
|
|
|
|
namespace complex_literals {
|
|
|
|
constexpr complex<float> operator""_if(long double imag) {
|
|
return complex<float>(0.0f, static_cast<float>(imag));
|
|
}
|
|
|
|
constexpr complex<double> operator""_id(long double imag) {
|
|
return complex<double>(0.0, static_cast<double>(imag));
|
|
}
|
|
|
|
constexpr complex<float> operator""_if(unsigned long long imag) {
|
|
return complex<float>(0.0f, static_cast<float>(imag));
|
|
}
|
|
|
|
constexpr complex<double> operator""_id(unsigned long long imag) {
|
|
return complex<double>(0.0, static_cast<double>(imag));
|
|
}
|
|
|
|
} // namespace complex_literals
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator+(const complex<T>& val) {
|
|
return val;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator-(const complex<T>& val) {
|
|
return complex<T>(-val.real(), -val.imag());
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs) {
|
|
complex<T> result = lhs;
|
|
return result += rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator+(const complex<T>& lhs, const T& rhs) {
|
|
complex<T> result = lhs;
|
|
return result += rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator+(const T& lhs, const complex<T>& rhs) {
|
|
return complex<T>(lhs + rhs.real(), rhs.imag());
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs) {
|
|
complex<T> result = lhs;
|
|
return result -= rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator-(const complex<T>& lhs, const T& rhs) {
|
|
complex<T> result = lhs;
|
|
return result -= rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator-(const T& lhs, const complex<T>& rhs) {
|
|
complex<T> result = -rhs;
|
|
return result += lhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs) {
|
|
complex<T> result = lhs;
|
|
return result *= rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator*(const complex<T>& lhs, const T& rhs) {
|
|
complex<T> result = lhs;
|
|
return result *= rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator*(const T& lhs, const complex<T>& rhs) {
|
|
complex<T> result = rhs;
|
|
return result *= lhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs) {
|
|
complex<T> result = lhs;
|
|
return result /= rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator/(const complex<T>& lhs, const T& rhs) {
|
|
complex<T> result = lhs;
|
|
return result /= rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr complex<T> operator/(const T& lhs, const complex<T>& rhs) {
|
|
complex<T> result(lhs, T());
|
|
return result /= rhs;
|
|
}
|
|
|
|
// Define operators between integral scalars and c10::complex. std::complex does
|
|
// not support this when T is a floating-point number. This is useful because it
|
|
// saves a lot of "static_cast" when operate a complex and an integer. This
|
|
// makes the code both less verbose and potentially more efficient.
|
|
#define COMPLEX_INTEGER_OP_TEMPLATE_CONDITION \
|
|
typename std::enable_if_t< \
|
|
std::is_floating_point_v<fT> && std::is_integral_v<iT>, \
|
|
int> = 0
|
|
|
|
template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
|
|
constexpr c10::complex<fT> operator+(const c10::complex<fT>& a, const iT& b) {
|
|
return a + static_cast<fT>(b);
|
|
}
|
|
|
|
template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
|
|
constexpr c10::complex<fT> operator+(const iT& a, const c10::complex<fT>& b) {
|
|
return static_cast<fT>(a) + b;
|
|
}
|
|
|
|
template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
|
|
constexpr c10::complex<fT> operator-(const c10::complex<fT>& a, const iT& b) {
|
|
return a - static_cast<fT>(b);
|
|
}
|
|
|
|
template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
|
|
constexpr c10::complex<fT> operator-(const iT& a, const c10::complex<fT>& b) {
|
|
return static_cast<fT>(a) - b;
|
|
}
|
|
|
|
template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
|
|
constexpr c10::complex<fT> operator*(const c10::complex<fT>& a, const iT& b) {
|
|
return a * static_cast<fT>(b);
|
|
}
|
|
|
|
template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
|
|
constexpr c10::complex<fT> operator*(const iT& a, const c10::complex<fT>& b) {
|
|
return static_cast<fT>(a) * b;
|
|
}
|
|
|
|
template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
|
|
constexpr c10::complex<fT> operator/(const c10::complex<fT>& a, const iT& b) {
|
|
return a / static_cast<fT>(b);
|
|
}
|
|
|
|
template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
|
|
constexpr c10::complex<fT> operator/(const iT& a, const c10::complex<fT>& b) {
|
|
return static_cast<fT>(a) / b;
|
|
}
|
|
|
|
#undef COMPLEX_INTEGER_OP_TEMPLATE_CONDITION
|
|
|
|
template <typename T>
|
|
constexpr bool operator==(const complex<T>& lhs, const complex<T>& rhs) {
|
|
return (lhs.real() == rhs.real()) && (lhs.imag() == rhs.imag());
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator==(const complex<T>& lhs, const T& rhs) {
|
|
return (lhs.real() == rhs) && (lhs.imag() == T());
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator==(const T& lhs, const complex<T>& rhs) {
|
|
return (lhs == rhs.real()) && (T() == rhs.imag());
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator!=(const complex<T>& lhs, const complex<T>& rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator!=(const complex<T>& lhs, const T& rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator!=(const T& lhs, const complex<T>& rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
template <typename T, typename CharT, typename Traits>
|
|
std::basic_ostream<CharT, Traits>& operator<<(
|
|
std::basic_ostream<CharT, Traits>& os,
|
|
const complex<T>& x) {
|
|
return (os << static_cast<std::complex<T>>(x));
|
|
}
|
|
|
|
template <typename T, typename CharT, typename Traits>
|
|
std::basic_istream<CharT, Traits>& operator>>(
|
|
std::basic_istream<CharT, Traits>& is,
|
|
complex<T>& x) {
|
|
std::complex<T> tmp;
|
|
is >> tmp;
|
|
x = tmp;
|
|
return is;
|
|
}
|
|
|
|
} // namespace c10
|
|
|
|
// std functions
|
|
//
|
|
// The implementation of these functions also follow the design of C++20
|
|
|
|
namespace std {
|
|
|
|
template <typename T>
|
|
constexpr T real(const c10::complex<T>& z) {
|
|
return z.real();
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr T imag(const c10::complex<T>& z) {
|
|
return z.imag();
|
|
}
|
|
|
|
template <typename T>
|
|
C10_HOST_DEVICE T abs(const c10::complex<T>& z) {
|
|
#if defined(__CUDACC__) || defined(__HIPCC__)
|
|
return thrust::abs(static_cast<thrust::complex<T>>(z));
|
|
#else
|
|
return std::abs(static_cast<std::complex<T>>(z));
|
|
#endif
|
|
}
|
|
|
|
#if defined(USE_ROCM)
|
|
#define ROCm_Bug(x)
|
|
#else
|
|
#define ROCm_Bug(x) x
|
|
#endif
|
|
|
|
template <typename T>
|
|
C10_HOST_DEVICE T arg(const c10::complex<T>& z) {
|
|
return ROCm_Bug(std)::atan2(std::imag(z), std::real(z));
|
|
}
|
|
|
|
#undef ROCm_Bug
|
|
|
|
template <typename T>
|
|
constexpr T norm(const c10::complex<T>& z) {
|
|
return z.real() * z.real() + z.imag() * z.imag();
|
|
}
|
|
|
|
// For std::conj, there are other versions of it:
|
|
// constexpr std::complex<float> conj( float z );
|
|
// template< class DoubleOrInteger >
|
|
// constexpr std::complex<double> conj( DoubleOrInteger z );
|
|
// constexpr std::complex<long double> conj( long double z );
|
|
// These are not implemented
|
|
// TODO(@zasdfgbnm): implement them as c10::conj
|
|
template <typename T>
|
|
constexpr c10::complex<T> conj(const c10::complex<T>& z) {
|
|
return c10::complex<T>(z.real(), -z.imag());
|
|
}
|
|
|
|
// Thrust does not have complex --> complex version of thrust::proj,
|
|
// so this function is not implemented at c10 right now.
|
|
// TODO(@zasdfgbnm): implement it by ourselves
|
|
|
|
// There is no c10 version of std::polar, because std::polar always
|
|
// returns std::complex. Use c10::polar instead;
|
|
|
|
} // namespace std
|
|
|
|
namespace c10 {
|
|
|
|
template <typename T>
|
|
C10_HOST_DEVICE complex<T> polar(const T& r, const T& theta = T()) {
|
|
#if defined(__CUDACC__) || defined(__HIPCC__)
|
|
return static_cast<complex<T>>(thrust::polar(r, theta));
|
|
#else
|
|
// std::polar() requires r >= 0, so spell out the explicit implementation to
|
|
// avoid a branch.
|
|
return complex<T>(r * std::cos(theta), r * std::sin(theta));
|
|
#endif
|
|
}
|
|
|
|
} // namespace c10
|
|
|
|
C10_CLANG_DIAGNOSTIC_POP()
|
|
|
|
#define C10_INTERNAL_INCLUDE_COMPLEX_REMAINING_H
|
|
// math functions are included in a separate file
|
|
#include <c10/util/complex_math.h> // IWYU pragma: keep
|
|
// utilities for complex types
|
|
#include <c10/util/complex_utils.h> // IWYU pragma: keep
|
|
#undef C10_INTERNAL_INCLUDE_COMPLEX_REMAINING_H
|