58 lines
2.0 KiB
Python
58 lines
2.0 KiB
Python
"""Defines utilities for interacting with scaled_dot_product_attention"""
|
|
import math
|
|
from typing import List, Optional
|
|
|
|
import torch
|
|
|
|
__all__: List[str] = []
|
|
|
|
|
|
def _input_requires_grad(*tensors: torch.Tensor) -> bool:
|
|
"""Returns True if any of the tensors requires grad"""
|
|
return any(t.requires_grad for t in tensors)
|
|
|
|
|
|
def _postprocess_flash_output(inpt_tensor: torch.Tensor, og_size: int) -> torch.Tensor:
|
|
"""Handles the unpad of the last dimension"""
|
|
if inpt_tensor.size(-1) != og_size:
|
|
return inpt_tensor[..., :og_size]
|
|
return inpt_tensor
|
|
|
|
|
|
def _calculate_scale(head_dim_size: int, scale: Optional[float]) -> float:
|
|
"""
|
|
For FlashAttention we pad the head dimension to be a multiple of 8 so we need to scale the output
|
|
by the original head size and not the padded.
|
|
"""
|
|
if scale is not None:
|
|
return scale
|
|
return 1.0 / math.sqrt(head_dim_size)
|
|
|
|
|
|
def _validate_sdpa_input(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
dropout_p=0.0,
|
|
is_causal=False,
|
|
scale=None,
|
|
):
|
|
if query.dtype != key.dtype or query.dtype != value.dtype:
|
|
raise ValueError(
|
|
f"Expected query, key, and value to have the same dtype, "
|
|
f"but got query.dtype: {query.dtype}, key.dtype: {key.dtype}, "
|
|
f"and value.dtype: {value.dtype} instead."
|
|
)
|
|
if query.device != key.device or query.device != value.device:
|
|
raise ValueError(
|
|
f"Expected query, key, and value to have the same device type, "
|
|
f"but got query.device: {query.device}, key.device: {key.device}, "
|
|
f"and value.device: {value.device} instead."
|
|
)
|
|
if query.dim() < 2 or key.dim() < 2 or value.dim() < 2:
|
|
raise ValueError(
|
|
f"Expected query, key, and value to all be at least 2 dimensional, but got query.dim: "
|
|
f"{query.dim()}, key.dim: {key.dim()} and value.dim: {value.dim()} instead."
|
|
)
|