ai-content-maker/.venv/Lib/site-packages/torch/nn/modules/_functions.py

289 lines
12 KiB
Python

import torch
import torch.distributed as dist
from torch.autograd.function import Function
class SyncBatchNorm(Function):
@staticmethod
def forward(self, input, weight, bias, running_mean, running_var, eps, momentum, process_group, world_size):
if not (
input.is_contiguous(memory_format=torch.channels_last) or
input.is_contiguous(memory_format=torch.channels_last_3d)
):
input = input.contiguous()
if weight is not None:
weight = weight.contiguous()
size = int(input.numel() // input.size(1))
if size == 1 and world_size < 2:
raise ValueError(f'Expected more than 1 value per channel when training, got input size {size}')
num_channels = input.shape[1]
if input.numel() > 0:
# calculate mean/invstd for input.
mean, invstd = torch.batch_norm_stats(input, eps)
count = torch.full(
(1,),
input.numel() // input.size(1),
dtype=mean.dtype,
device=mean.device
)
# C, C, 1 -> (2C + 1)
combined = torch.cat([mean, invstd, count], dim=0)
else:
# for empty input, set stats and the count to zero. The stats with
# zero count will be filtered out later when computing global mean
# & invstd, but they still needs to participate the all_gather
# collective communication to unblock other peer processes.
combined = torch.zeros(
2 * num_channels + 1,
dtype=input.dtype,
device=input.device
)
# Use allgather instead of allreduce because count could be different across
# ranks, simple all reduce op can not give correct results.
# batch_norm_gather_stats_with_counts calculates global mean & invstd based on
# all gathered mean, invstd and count.
# for nccl backend, use the optimized version of all gather.
# The Gloo backend does not support `all_gather_into_tensor`.
if process_group._get_backend_name() != "gloo":
# world_size * (2C + 1)
combined_size = combined.numel()
combined_flat = torch.empty(1,
combined_size * world_size,
dtype=combined.dtype,
device=combined.device)
dist.all_gather_into_tensor(combined_flat, combined, process_group, async_op=False)
combined = torch.reshape(combined_flat, (world_size, combined_size))
# world_size * (2C + 1) -> world_size * C, world_size * C, world_size * 1
mean_all, invstd_all, count_all = torch.split(combined, num_channels, dim=1)
else:
# world_size * (2C + 1)
combined_list = [
torch.empty_like(combined) for _ in range(world_size)
]
dist.all_gather(combined_list, combined, process_group, async_op=False)
combined = torch.stack(combined_list, dim=0)
# world_size * (2C + 1) -> world_size * C, world_size * C, world_size * 1
mean_all, invstd_all, count_all = torch.split(combined, num_channels, dim=1)
if not (torch.cuda.is_available() and torch.cuda.is_current_stream_capturing()):
# The lines below force a synchronization between CUDA and CPU, because
# the shape of the result count_all depends on the values in mask tensor.
# Such synchronizations break CUDA Graph capturing.
# See https://github.com/pytorch/pytorch/issues/78549
# FIXME: https://github.com/pytorch/pytorch/issues/78656 describes
# a better longer-term solution.
# remove stats from empty inputs
mask = count_all.squeeze(-1) >= 1
count_all = count_all[mask]
mean_all = mean_all[mask]
invstd_all = invstd_all[mask]
# calculate global mean & invstd
counts = count_all.view(-1)
if running_mean is not None and counts.dtype != running_mean.dtype:
counts = counts.to(running_mean.dtype)
mean, invstd = torch.batch_norm_gather_stats_with_counts(
input,
mean_all,
invstd_all,
running_mean,
running_var,
momentum,
eps,
counts,
)
self.save_for_backward(input, weight, mean, invstd, count_all.to(torch.int32))
self.process_group = process_group
# apply element-wise normalization
if input.numel() > 0:
return torch.batch_norm_elemt(input, weight, bias, mean, invstd, eps)
else:
return torch.empty_like(input)
@staticmethod
def backward(self, grad_output):
if not (
grad_output.is_contiguous(memory_format=torch.channels_last) or
grad_output.is_contiguous(memory_format=torch.channels_last_3d)
):
grad_output = grad_output.contiguous()
saved_input, weight, mean, invstd, count_tensor = self.saved_tensors
grad_input = grad_weight = grad_bias = None
process_group = self.process_group
if saved_input.numel() > 0:
# calculate local stats as well as grad_weight / grad_bias
sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce(
grad_output,
saved_input,
mean,
invstd,
weight,
self.needs_input_grad[0],
self.needs_input_grad[1],
self.needs_input_grad[2]
)
if self.needs_input_grad[0]:
# synchronizing stats used to calculate input gradient.
num_channels = sum_dy.shape[0]
combined = torch.cat([sum_dy, sum_dy_xmu], dim=0)
torch.distributed.all_reduce(
combined, torch.distributed.ReduceOp.SUM, process_group, async_op=False)
sum_dy, sum_dy_xmu = torch.split(combined, num_channels)
# backward pass for gradient calculation
if weight is not None and weight.dtype != mean.dtype:
weight = weight.to(mean.dtype)
grad_input = torch.batch_norm_backward_elemt(
grad_output,
saved_input,
mean,
invstd,
weight,
sum_dy,
sum_dy_xmu,
count_tensor
)
# synchronizing of grad_weight / grad_bias is not needed as distributed
# training would handle all reduce.
if weight is None or not self.needs_input_grad[1]:
grad_weight = None
if weight is None or not self.needs_input_grad[2]:
grad_bias = None
else:
# This process got an empty input tensor in the forward pass.
# Although this process can directly set grad_input as an empty
# tensor of zeros, it still needs to participate in the collective
# communication to unblock its peers, as other peer processes might
# have received non-empty inputs.
num_channels = saved_input.shape[1]
if self.needs_input_grad[0]:
# launch all_reduce to unblock other peer processes
combined = torch.zeros(
2 * num_channels,
dtype=saved_input.dtype,
device=saved_input.device
)
torch.distributed.all_reduce(
combined, torch.distributed.ReduceOp.SUM, process_group, async_op=False)
# Leave grad_input, grad_weight and grad_bias as None, which will be
# interpreted by the autograd engine as Tensors full of zeros.
return grad_input, grad_weight, grad_bias, None, None, None, None, None, None
class CrossMapLRN2d(Function):
@staticmethod
def forward(ctx, input, size, alpha=1e-4, beta=0.75, k=1):
ctx.size = size
ctx.alpha = alpha
ctx.beta = beta
ctx.k = k
ctx.scale = None
if input.dim() != 4:
raise ValueError(f"CrossMapLRN2d: Expected input to be 4D, got {input.dim()}D instead.")
ctx.scale = ctx.scale or input.new()
output = input.new()
batch_size = input.size(0)
channels = input.size(1)
input_height = input.size(2)
input_width = input.size(3)
output.resize_as_(input)
ctx.scale.resize_as_(input)
# use output storage as temporary buffer
input_square = output
torch.pow(input, 2, out=input_square)
pre_pad = int((ctx.size - 1) / 2 + 1)
pre_pad_crop = min(pre_pad, channels)
scale_first = ctx.scale.select(1, 0)
scale_first.zero_()
# compute first feature map normalization
for c in range(pre_pad_crop):
scale_first.add_(input_square.select(1, c))
# reuse computations for next feature maps normalization
# by adding the next feature map and removing the previous
for c in range(1, channels):
scale_previous = ctx.scale.select(1, c - 1)
scale_current = ctx.scale.select(1, c)
scale_current.copy_(scale_previous)
if c < channels - pre_pad + 1:
square_next = input_square.select(1, c + pre_pad - 1)
scale_current.add_(square_next, alpha=1)
if c > pre_pad:
square_previous = input_square.select(1, c - pre_pad)
scale_current.add_(square_previous, alpha=-1)
ctx.scale.mul_(ctx.alpha / ctx.size).add_(ctx.k)
torch.pow(ctx.scale, -ctx.beta, out=output)
output.mul_(input)
ctx.save_for_backward(input, output)
return output
@staticmethod
def backward(ctx, grad_output):
input, output = ctx.saved_tensors
grad_input = grad_output.new()
batch_size = input.size(0)
channels = input.size(1)
input_height = input.size(2)
input_width = input.size(3)
paddded_ratio = input.new(channels + ctx.size - 1, input_height,
input_width)
accum_ratio = input.new(input_height, input_width)
cache_ratio_value = 2 * ctx.alpha * ctx.beta / ctx.size
inversePrePad = int(ctx.size - (ctx.size - 1) / 2)
grad_input.resize_as_(input)
torch.pow(ctx.scale, -ctx.beta, out=grad_input).mul_(grad_output)
paddded_ratio.zero_()
padded_ratio_center = paddded_ratio.narrow(0, inversePrePad,
channels)
for n in range(batch_size):
torch.mul(grad_output[n], output[n], out=padded_ratio_center)
padded_ratio_center.div_(ctx.scale[n])
torch.sum(
paddded_ratio.narrow(0, 0, ctx.size - 1), 0, keepdim=False, out=accum_ratio)
for c in range(channels):
accum_ratio.add_(paddded_ratio[c + ctx.size - 1])
grad_input[n][c].addcmul_(input[n][c], accum_ratio, value=-cache_ratio_value)
accum_ratio.add_(paddded_ratio[c], alpha=-1)
return grad_input, None, None, None, None
class BackwardHookFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, *args):
ctx.mark_non_differentiable(*[arg for arg in args if not arg.requires_grad])
return args
@staticmethod
def backward(ctx, *args):
return args