2055 lines
93 KiB
Python
2055 lines
93 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch KOSMOS-2 model."""
|
|
|
|
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import Any, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
from ...activations import ACT2FN
|
|
from ...modeling_outputs import (
|
|
BaseModelOutput,
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
BaseModelOutputWithPooling,
|
|
CausalLMOutputWithCrossAttentions,
|
|
)
|
|
from ...modeling_utils import PreTrainedModel
|
|
from ...utils import (
|
|
ModelOutput,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from .configuration_kosmos2 import Kosmos2Config, Kosmos2TextConfig, Kosmos2VisionConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CONFIG_FOR_DOC = Kosmos2Config
|
|
|
|
|
|
from ..deprecated._archive_maps import KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
|
"""
|
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
|
"""
|
|
bsz, src_len = mask.size()
|
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
|
|
|
inverted_mask = 1.0 - expanded_mask
|
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
|
|
|
|
|
def _make_causal_mask(
|
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
|
):
|
|
"""
|
|
Make causal mask used for bi-directional self-attention.
|
|
"""
|
|
bsz, tgt_len = input_ids_shape
|
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
|
mask_cond = torch.arange(mask.size(-1), device=device)
|
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
|
mask = mask.to(dtype)
|
|
|
|
if past_key_values_length > 0:
|
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
|
|
|
|
|
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
|
"""
|
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
|
are ignored. This is modified from fairseq's `utils.make_positions`.
|
|
|
|
Args:
|
|
x: torch.Tensor x:
|
|
|
|
Returns: torch.Tensor
|
|
"""
|
|
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
|
mask = input_ids.ne(padding_idx).int()
|
|
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
|
return incremental_indices.long() + padding_idx
|
|
|
|
|
|
KOSMOS2_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`Kosmos2Config`]): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
KOSMOS2_VISION_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
|
[`CLIPImageProcessor.__call__`] for details.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
KOSMOS2_TEXT_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
image_embeds: (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
|
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
|
|
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
|
|
1]`:
|
|
|
|
- 1 for places where to put the image features,
|
|
- 0 for places that are not for image features (i.e. for text tokens).
|
|
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
|
the model is configured as a decoder.
|
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.max_position_embeddings - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
KOSMOS2_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
|
[`CLIPImageProcessor.__call__`] for details.
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
|
|
1]`:
|
|
|
|
- 1 for places where to put the image features,
|
|
- 0 for places that are not for image features (i.e. for text tokens).
|
|
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
image_embeds: (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
|
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.max_position_embeddings - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@dataclass
|
|
class Kosmos2ModelOutput(ModelOutput):
|
|
"""
|
|
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
|
|
|
Args:
|
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
Sequence of hidden-states at the output of the last layer of the model.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
|
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
|
|
projection_attentions (`tuple(torch.FloatTensor)`, *optional*):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute
|
|
the weighted average in the self-attention heads.
|
|
vision_model_output(`BaseModelOutputWithPooling`, *optional*):
|
|
The output of the [`Kosmos2VisionModel`].
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
|
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
|
encoder_sequence_length, embed_size_per_head)`.
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
|
input) to speed up sequential decoding.
|
|
"""
|
|
|
|
last_hidden_state: torch.FloatTensor = None
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
image_embeds: Optional[torch.FloatTensor] = None
|
|
projection_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
vision_model_output: BaseModelOutputWithPooling = None
|
|
|
|
def to_tuple(self) -> Tuple[Any]:
|
|
return tuple(
|
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
|
for k in self.keys()
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput):
|
|
"""
|
|
Model output class for `Kosmos2ForConditionalGeneration`.
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
Language modeling loss (for next-token prediction).
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
|
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
|
|
projection_attentions (`tuple(torch.FloatTensor)`, *optional*):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute
|
|
the weighted average in the self-attention heads.
|
|
vision_model_output(`BaseModelOutputWithPooling`, *optional*):
|
|
The output of the [`Kosmos2VisionModel`].
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
|
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
|
encoder_sequence_length, embed_size_per_head)`.
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
|
input) to speed up sequential decoding.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: torch.FloatTensor = None
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
image_embeds: Optional[torch.FloatTensor] = None
|
|
projection_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
vision_model_output: BaseModelOutputWithPooling = None
|
|
|
|
def to_tuple(self) -> Tuple[Any]:
|
|
return tuple(
|
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
|
for k in self.keys()
|
|
)
|
|
|
|
|
|
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Kosmos2
|
|
class Kosmos2VisionEmbeddings(nn.Module):
|
|
def __init__(self, config: Kosmos2VisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
|
|
|
self.patch_embedding = nn.Conv2d(
|
|
in_channels=config.num_channels,
|
|
out_channels=self.embed_dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size,
|
|
bias=False,
|
|
)
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.num_positions = self.num_patches + 1
|
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
|
batch_size = pixel_values.shape[0]
|
|
target_dtype = self.patch_embedding.weight.dtype
|
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
|
embeddings = embeddings + self.position_embedding(self.position_ids)
|
|
return embeddings
|
|
|
|
|
|
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Kosmos2Vision
|
|
class Kosmos2VisionAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
self.scale = self.head_dim**-0.5
|
|
self.dropout = config.attention_dropout
|
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
bsz, tgt_len, embed_dim = hidden_states.size()
|
|
|
|
# get query proj
|
|
query_states = self.q_proj(hidden_states) * self.scale
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
|
key_states = key_states.view(*proj_shape)
|
|
value_states = value_states.view(*proj_shape)
|
|
|
|
src_len = key_states.size(1)
|
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
|
raise ValueError(
|
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
|
f" {attn_weights.size()}"
|
|
)
|
|
|
|
# apply the causal_attention_mask first
|
|
if causal_attention_mask is not None:
|
|
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
|
f" {causal_attention_mask.size()}"
|
|
)
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
|
)
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
|
|
if output_attentions:
|
|
# this operation is a bit akward, but it's required to
|
|
# make sure that attn_weights keeps its gradient.
|
|
# In order to do so, attn_weights have to reshaped
|
|
# twice and have to be reused in the following
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
|
else:
|
|
attn_weights_reshaped = None
|
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
|
|
|
attn_output = torch.bmm(attn_probs, value_states)
|
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
|
f" {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
|
attn_output = attn_output.transpose(1, 2)
|
|
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
|
|
|
attn_output = self.out_proj(attn_output)
|
|
|
|
return attn_output, attn_weights_reshaped
|
|
|
|
|
|
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Kosmos2Vision
|
|
class Kosmos2VisionMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = ACT2FN[config.hidden_act]
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Kosmos2Vision
|
|
class Kosmos2VisionEncoderLayer(nn.Module):
|
|
def __init__(self, config: Kosmos2VisionConfig):
|
|
super().__init__()
|
|
self.embed_dim = config.hidden_size
|
|
self.self_attn = Kosmos2VisionAttention(config)
|
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
self.mlp = Kosmos2VisionMLP(config)
|
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
causal_attention_mask: torch.Tensor,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.FloatTensor]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
|
`(config.encoder_attention_heads,)`.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
"""
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.layer_norm1(hidden_states)
|
|
hidden_states, attn_weights = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
causal_attention_mask=causal_attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.layer_norm2(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
return outputs
|
|
|
|
|
|
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Kosmos2Vision
|
|
class Kosmos2VisionEncoder(nn.Module):
|
|
"""
|
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
|
[`Kosmos2VisionEncoderLayer`].
|
|
|
|
Args:
|
|
config: Kosmos2VisionConfig
|
|
"""
|
|
|
|
def __init__(self, config: Kosmos2VisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layers = nn.ModuleList([Kosmos2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
inputs_embeds,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutput]:
|
|
r"""
|
|
Args:
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
|
than the model's internal embedding lookup matrix.
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
for more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
hidden_states = inputs_embeds
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
encoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
causal_attention_mask,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
causal_attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
|
)
|
|
|
|
|
|
# Similar to `transformers.models.clip.modeling_clip.CLIPVisionTransformer` but without docstring for `forward`
|
|
class Kosmos2VisionTransformer(nn.Module):
|
|
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIPVision->Kosmos2Vision,CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2Vision
|
|
def __init__(self, config: Kosmos2VisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
embed_dim = config.hidden_size
|
|
|
|
self.embeddings = Kosmos2VisionEmbeddings(config)
|
|
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
self.encoder = Kosmos2VisionEncoder(config)
|
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if pixel_values is None:
|
|
raise ValueError("You have to specify pixel_values")
|
|
|
|
hidden_states = self.embeddings(pixel_values)
|
|
hidden_states = self.pre_layrnorm(hidden_states)
|
|
|
|
encoder_outputs = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
last_hidden_state = encoder_outputs[0]
|
|
pooled_output = last_hidden_state[:, 0, :]
|
|
pooled_output = self.post_layernorm(pooled_output)
|
|
|
|
if not return_dict:
|
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
|
|
|
return BaseModelOutputWithPooling(
|
|
last_hidden_state=last_hidden_state,
|
|
pooler_output=pooled_output,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
# Similar to `transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding` but allowing to pass `position_ids`
|
|
class Kosmos2TextSinusoidalPositionalEmbedding(nn.Module):
|
|
"""This module produces sinusoidal positional embeddings of any length."""
|
|
|
|
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.__init__
|
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
|
super().__init__()
|
|
self.offset = 2
|
|
self.embedding_dim = embedding_dim
|
|
self.padding_idx = padding_idx
|
|
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
|
|
|
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.make_weights
|
|
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
|
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
|
|
if hasattr(self, "weights"):
|
|
# in forward put the weights on the correct dtype and device of the param
|
|
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
|
|
|
|
self.register_buffer("weights", emb_weights, persistent=False)
|
|
|
|
@staticmethod
|
|
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.get_embedding
|
|
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
|
"""
|
|
Build sinusoidal embeddings.
|
|
|
|
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
|
|
"Attention Is All You Need".
|
|
"""
|
|
half_dim = embedding_dim // 2
|
|
emb = math.log(10000) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
|
|
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
|
if embedding_dim % 2 == 1:
|
|
# zero pad
|
|
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
|
if padding_idx is not None:
|
|
emb[padding_idx, :] = 0
|
|
|
|
return emb.to(torch.get_default_dtype())
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor = None,
|
|
inputs_embeds: torch.Tensor = None,
|
|
past_key_values_length: int = 0,
|
|
position_ids: torch.Tensor = None,
|
|
):
|
|
if input_ids is not None:
|
|
bsz, seq_len = input_ids.size()
|
|
if position_ids is None:
|
|
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
|
position_ids = create_position_ids_from_input_ids(
|
|
input_ids, self.padding_idx, past_key_values_length
|
|
).to(input_ids.device)
|
|
else:
|
|
bsz, seq_len = inputs_embeds.size()[:-1]
|
|
if position_ids is None:
|
|
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
|
|
|
|
# expand embeddings if needed
|
|
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
|
|
if max_pos > self.weights.size(0):
|
|
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
|
|
|
|
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
|
|
|
|
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.create_position_ids_from_inputs_embeds
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
|
|
"""
|
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
|
|
|
Args:
|
|
inputs_embeds: torch.Tensor
|
|
|
|
Returns: torch.Tensor
|
|
"""
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
sequence_length = input_shape[1]
|
|
|
|
position_ids = torch.arange(
|
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
|
)
|
|
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
|
|
|
|
|
|
class KosmosTextAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
# Similar to transformers.models.bart.modeling_bart.BartAttention.__init__ except an additional `inner_attn_ln`.
|
|
def __init__(
|
|
self,
|
|
config,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
dropout: float = 0.0,
|
|
is_decoder: bool = False,
|
|
add_inner_attn_layernorm: bool = False,
|
|
bias: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.dropout = dropout
|
|
self.head_dim = embed_dim // num_heads
|
|
|
|
if (self.head_dim * num_heads) != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
|
f" and `num_heads`: {num_heads})."
|
|
)
|
|
self.scaling = self.head_dim**-0.5
|
|
self.is_decoder = is_decoder
|
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
|
|
# End opy
|
|
self.inner_attn_ln = None
|
|
if add_inner_attn_layernorm:
|
|
self.inner_attn_ln = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
|
|
def _shape(self, projection: torch.Tensor) -> torch.Tensor:
|
|
new_projection_shape = projection.size()[:-1] + (self.num_heads, self.head_dim)
|
|
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
|
|
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
|
|
return new_projection
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
layer_head_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
|
# for the decoder
|
|
is_cross_attention = encoder_hidden_states is not None
|
|
batch_size, seq_length = hidden_states.shape[:2]
|
|
|
|
# use encoder_hidden_states if cross attention
|
|
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
|
# checking that the `sequence_length` of the `past_key_value` is the same as the he provided
|
|
# `encoder_hidden_states` to support prefix tuning
|
|
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]:
|
|
# reuse k,v, cross_attentions
|
|
key_states = past_key_value[0]
|
|
value_states = past_key_value[1]
|
|
else:
|
|
key_states = self._shape(self.k_proj(current_states))
|
|
value_states = self._shape(self.v_proj(current_states))
|
|
if past_key_value is not None and not is_cross_attention:
|
|
# reuse k, v, self_attention
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
|
|
query_states = self._shape(self.q_proj(hidden_states) * self.scaling)
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2))
|
|
|
|
if self.is_decoder:
|
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
|
# key/value_states (first "if" case)
|
|
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
|
past_key_value = (key_states, value_states)
|
|
|
|
src_len = key_states.size(2)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (batch_size, 1, seq_length, src_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(batch_size, 1, seq_length, src_len)}, but is {attention_mask.size()}"
|
|
)
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
|
|
# Mask heads if we want to
|
|
if layer_head_mask is not None:
|
|
attn_weights = attn_weights * layer_head_mask
|
|
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
|
|
|
# attn_output = torch.bmm(attn_probs, value_states) ?
|
|
context_states = torch.matmul(attn_weights, value_states)
|
|
# attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ?
|
|
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
|
|
|
|
if self.inner_attn_ln is not None:
|
|
context_states = self.inner_attn_ln(context_states)
|
|
|
|
attn_output = self.out_proj(context_states)
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
class Kosmos2TextFFN(nn.Module):
|
|
def __init__(self, config: Kosmos2TextConfig):
|
|
super().__init__()
|
|
|
|
self.dropout = config.dropout
|
|
self.activation_fn = ACT2FN[config.activation_function]
|
|
self.activation_dropout = config.activation_dropout
|
|
|
|
self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim)
|
|
self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim)
|
|
|
|
self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
|
hidden_states = self.ffn_layernorm(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class Kosmos2TextBlock(nn.Module):
|
|
def __init__(self, config: Kosmos2TextConfig):
|
|
super().__init__()
|
|
self.embed_dim = config.embed_dim
|
|
|
|
self.self_attn = KosmosTextAttention(
|
|
config,
|
|
embed_dim=self.embed_dim,
|
|
num_heads=config.attention_heads,
|
|
dropout=config.attention_dropout,
|
|
is_decoder=True,
|
|
add_inner_attn_layernorm=True,
|
|
)
|
|
self.dropout = config.dropout
|
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
if config.add_cross_attention:
|
|
self.encoder_attn = KosmosTextAttention(
|
|
config,
|
|
embed_dim=self.embed_dim,
|
|
num_heads=config.attention_heads,
|
|
dropout=config.attention_dropout,
|
|
is_decoder=True,
|
|
add_inner_attn_layernorm=False,
|
|
)
|
|
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
self.ffn = Kosmos2TextFFN(config)
|
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
layer_head_mask: Optional[torch.Tensor] = None,
|
|
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = True,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
residual = hidden_states
|
|
|
|
# Self Attention
|
|
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
|
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
|
|
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
past_key_value=self_attn_past_key_value,
|
|
attention_mask=attention_mask,
|
|
layer_head_mask=layer_head_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
# Cross-Attention Block
|
|
cross_attn_present_key_value = None
|
|
cross_attn_weights = None
|
|
if encoder_hidden_states is not None:
|
|
if not hasattr(self, "encoder_attn"):
|
|
raise ValueError(
|
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
|
" by setting `config.add_cross_attention=True`"
|
|
)
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
|
|
|
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
|
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=encoder_attention_mask,
|
|
layer_head_mask=cross_attn_layer_head_mask,
|
|
past_key_value=cross_attn_past_key_value,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
# add cross-attn to positions 3,4 of present_key_value tuple
|
|
present_key_value = present_key_value + cross_attn_present_key_value
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
|
|
# FFN
|
|
hidden_states = self.ffn(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights, cross_attn_weights)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
|
|
class Kosmos2TextTransformer(nn.Module):
|
|
"""
|
|
Transformer decoder consisting of `config.layers` layers. Each layer is a [`Kosmos2TextBlock`].
|
|
|
|
Args:
|
|
config: Kosmos2TextConfig
|
|
"""
|
|
|
|
def __init__(self, config: Kosmos2TextConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.dropout = config.dropout
|
|
self.layerdrop = config.layerdrop
|
|
|
|
self.embed_scale = math.sqrt(config.embed_dim) if config.scale_embedding else 1.0
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_dim, padding_idx=config.pad_token_id)
|
|
|
|
self.embed_positions = Kosmos2TextSinusoidalPositionalEmbedding(
|
|
num_positions=config.max_position_embeddings,
|
|
embedding_dim=config.embed_dim,
|
|
padding_idx=config.pad_token_id,
|
|
)
|
|
|
|
self.layers = nn.ModuleList([Kosmos2TextBlock(config) for _ in range(config.layers)])
|
|
self.layer_norm = nn.LayerNorm(config.embed_dim, config.layer_norm_eps)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
|
# create causal mask
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
combined_attention_mask = None
|
|
if input_shape[-1] > 1:
|
|
combined_attention_mask = _make_causal_mask(
|
|
input_shape,
|
|
inputs_embeds.dtype,
|
|
device=inputs_embeds.device,
|
|
past_key_values_length=past_key_values_length,
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
|
inputs_embeds.device
|
|
)
|
|
combined_attention_mask = (
|
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
|
)
|
|
|
|
return combined_attention_mask
|
|
|
|
def forward_embedding(
|
|
self,
|
|
input_ids,
|
|
inputs_embeds: torch.Tensor = None,
|
|
image_embeds: torch.Tensor = None,
|
|
img_input_mask: torch.Tensor = None,
|
|
past_key_values_length: int = 0,
|
|
position_ids: torch.Tensor = None,
|
|
):
|
|
# The argument `inputs_embeds` should be the one without being multiplied by `self.embed_scale`.
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if image_embeds is not None:
|
|
inputs_embeds[img_input_mask.to(dtype=torch.bool)] = image_embeds.to(inputs_embeds.device).view(
|
|
-1, image_embeds.size(-1)
|
|
)
|
|
|
|
inputs_embeds = inputs_embeds * self.embed_scale
|
|
|
|
# embed positions
|
|
positions = self.embed_positions(
|
|
input_ids=input_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
past_key_values_length=past_key_values_length,
|
|
position_ids=position_ids,
|
|
)
|
|
positions = positions.to(inputs_embeds.device)
|
|
|
|
hidden_states = inputs_embeds + positions
|
|
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
|
|
return hidden_states
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
image_embeds: Optional[torch.Tensor] = None,
|
|
image_embeds_position_mask: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_shape = input_ids.shape
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
# past_key_values_length
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
|
|
|
# We don't need img info. when `past_key_values_length` > 0
|
|
if past_key_values_length > 0:
|
|
image_embeds = None
|
|
image_embeds_position_mask = None
|
|
|
|
hidden_states = self.forward_embedding(
|
|
input_ids=input_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
image_embeds=image_embeds,
|
|
img_input_mask=image_embeds_position_mask,
|
|
past_key_values_length=past_key_values_length,
|
|
position_ids=position_ids,
|
|
)
|
|
|
|
attention_mask = self._prepare_decoder_attention_mask(
|
|
attention_mask, input_shape, hidden_states, past_key_values_length
|
|
)
|
|
|
|
# expand encoder attention mask
|
|
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
|
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
|
present_key_value_states = () if use_cache else None
|
|
|
|
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
|
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
|
if attn_mask is not None:
|
|
if attn_mask.size()[0] != (len(self.layers)):
|
|
raise ValueError(
|
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
|
f" {head_mask.size()[0]}."
|
|
)
|
|
|
|
for idx, decoder_layer in enumerate(self.layers):
|
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
if self.training:
|
|
dropout_probability = torch.rand([])
|
|
if dropout_probability < self.layerdrop:
|
|
continue
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
head_mask[idx] if head_mask is not None else None,
|
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
|
None,
|
|
output_attentions,
|
|
use_cache,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
|
cross_attn_layer_head_mask=(
|
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
|
),
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
present_key_value_states += (layer_outputs[3 if output_attentions else 1],)
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
if encoder_hidden_states is not None:
|
|
all_cross_attentions += (layer_outputs[2],)
|
|
|
|
# add final layer norm
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [
|
|
hidden_states,
|
|
present_key_value_states,
|
|
all_hidden_states,
|
|
all_self_attns,
|
|
all_cross_attentions,
|
|
]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=present_key_value_states,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
cross_attentions=all_cross_attentions,
|
|
)
|
|
|
|
|
|
class Kosmos2PreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = Kosmos2Config
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["Kosmos2VisionEncoderLayer", "Kosmos2TextBlock"]
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights"""
|
|
if isinstance(self, Kosmos2VisionModel):
|
|
factor = self.config.initializer_factor
|
|
elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)):
|
|
factor = self.config.vision_config.initializer_factor
|
|
|
|
if isinstance(self, (Kosmos2TextModel, Kosmos2TextForCausalLM)):
|
|
std = self.config.init_std
|
|
elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)):
|
|
std = self.config.text_config.init_std
|
|
|
|
if isinstance(module, Kosmos2VisionEmbeddings):
|
|
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
|
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
|
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
|
elif isinstance(module, Kosmos2VisionAttention):
|
|
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
|
out_proj_std = (module.embed_dim**-0.5) * factor
|
|
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
|
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
|
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
|
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
|
if module.q_proj.bias is not None:
|
|
module.q_proj.bias.data.zero_()
|
|
if module.k_proj.bias is not None:
|
|
module.k_proj.bias.data.zero_()
|
|
if module.v_proj.bias is not None:
|
|
module.v_proj.bias.data.zero_()
|
|
if module.out_proj.bias is not None:
|
|
module.out_proj.bias.data.zero_()
|
|
elif isinstance(module, Kosmos2VisionMLP):
|
|
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
|
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
|
nn.init.normal_(module.fc1.weight, std=fc_std)
|
|
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
|
if module.fc1.bias is not None:
|
|
module.fc1.bias.data.zero_()
|
|
if module.fc2.bias is not None:
|
|
module.fc2.bias.data.zero_()
|
|
elif isinstance(module, Kosmos2VisionEncoderLayer):
|
|
module.layer_norm1.bias.data.zero_()
|
|
module.layer_norm1.weight.data.fill_(1.0)
|
|
module.layer_norm2.bias.data.zero_()
|
|
module.layer_norm2.weight.data.fill_(1.0)
|
|
elif isinstance(module, Kosmos2VisionTransformer):
|
|
module.pre_layrnorm.bias.data.zero_()
|
|
module.pre_layrnorm.weight.data.fill_(1.0)
|
|
module.post_layernorm.bias.data.zero_()
|
|
module.post_layernorm.weight.data.fill_(1.0)
|
|
elif isinstance(module, KosmosTextAttention):
|
|
nn.init.normal_(module.q_proj.weight, std=std)
|
|
nn.init.normal_(module.k_proj.weight, std=std)
|
|
nn.init.normal_(module.v_proj.weight, std=std)
|
|
nn.init.normal_(module.out_proj.weight, std=std)
|
|
if module.q_proj.bias is not None:
|
|
module.q_proj.bias.data.zero_()
|
|
if module.k_proj.bias is not None:
|
|
module.k_proj.bias.data.zero_()
|
|
if module.v_proj.bias is not None:
|
|
module.v_proj.bias.data.zero_()
|
|
if module.out_proj.bias is not None:
|
|
module.out_proj.bias.data.zero_()
|
|
elif isinstance(module, Kosmos2TextFFN):
|
|
nn.init.normal_(module.fc1.weight, std=std)
|
|
nn.init.normal_(module.fc2.weight, std=std)
|
|
if module.fc1.bias is not None:
|
|
module.fc1.bias.data.zero_()
|
|
if module.fc2.bias is not None:
|
|
module.fc2.bias.data.zero_()
|
|
elif isinstance(module, Kosmos2TextForCausalLM):
|
|
nn.init.normal_(module.lm_head.weight, std=std)
|
|
if module.lm_head.bias is not None:
|
|
module.lm_head.bias.data.zero_()
|
|
elif isinstance(module, Kosmos2ImageToTextProjection):
|
|
nn.init.normal_(module.dense.weight, std=std)
|
|
if module.dense.bias is not None:
|
|
module.dense.bias.data.zero_()
|
|
elif isinstance(module, Kosmos2TextTransformer):
|
|
module.embed_tokens.weight.data.normal_(mean=0.0, std=std)
|
|
if module.embed_tokens.padding_idx is not None:
|
|
module.embed_tokens.weight.data[module.embed_tokens.padding_idx].zero_()
|
|
|
|
|
|
class Kosmos2VisionModel(Kosmos2PreTrainedModel):
|
|
config_class = Kosmos2VisionConfig
|
|
main_input_name = "pixel_values"
|
|
|
|
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model
|
|
def __init__(self, config: Kosmos2VisionConfig):
|
|
super().__init__(config)
|
|
self.model = Kosmos2VisionTransformer(config)
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.get_input_embeddings with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.model.embeddings.patch_embedding
|
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_VISION_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Kosmos2VisionConfig)
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
r"""
|
|
Returns:
|
|
|
|
"""
|
|
return self.model(
|
|
pixel_values=pixel_values,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
|
|
class Kosmos2TextModel(Kosmos2PreTrainedModel):
|
|
config_class = Kosmos2TextConfig
|
|
|
|
def __init__(self, config: Kosmos2TextConfig):
|
|
super().__init__(config)
|
|
self.model = Kosmos2TextTransformer(config)
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=Kosmos2TextConfig)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
image_embeds: Optional[torch.Tensor] = None,
|
|
image_embeds_position_mask: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
r"""
|
|
Returns:
|
|
|
|
"""
|
|
return self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
image_embeds=image_embeds,
|
|
image_embeds_position_mask=image_embeds_position_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
head_mask=head_mask,
|
|
cross_attn_head_mask=cross_attn_head_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
position_ids=position_ids,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The text model from KOSMOS-2 with a language modeling head on top (linear layer with weights tied to the input
|
|
embeddings).
|
|
""",
|
|
KOSMOS2_START_DOCSTRING,
|
|
)
|
|
class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel):
|
|
config_class = Kosmos2TextConfig
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config: Kosmos2TextConfig):
|
|
super().__init__(config)
|
|
|
|
self.model = Kosmos2TextTransformer(config)
|
|
self.lm_head = nn.Linear(in_features=config.embed_dim, out_features=config.vocab_size, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self) -> nn.Module:
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=Kosmos2TextConfig)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
image_embeds: Optional[torch.Tensor] = None,
|
|
image_embeds_position_mask: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
|
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
|
|
|
Returns:
|
|
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if labels is not None:
|
|
if use_cache:
|
|
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
|
|
use_cache = False
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
image_embeds=image_embeds,
|
|
image_embeds_position_mask=image_embeds_position_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
head_mask=head_mask,
|
|
cross_attn_head_mask=cross_attn_head_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
position_ids=position_ids,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
lm_logits = self.lm_head(outputs[0])
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# move labels to correct device to enable model parallelism
|
|
labels = labels.to(lm_logits.device)
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
batch_size, seq_length, vocab_size = shift_logits.shape
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(
|
|
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
|
)
|
|
|
|
if not return_dict:
|
|
output = (lm_logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithCrossAttentions(
|
|
loss=loss,
|
|
logits=lm_logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
cross_attentions=outputs.cross_attentions,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids,
|
|
image_embeds=None,
|
|
image_embeds_position_mask=None,
|
|
past_key_values=None,
|
|
attention_mask=None,
|
|
use_cache=None,
|
|
**model_kwargs,
|
|
):
|
|
input_shape = input_ids.shape
|
|
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
|
if attention_mask is None:
|
|
attention_mask = input_ids.new_ones(input_shape)
|
|
|
|
position_ids = None
|
|
|
|
# cut input_ids if past_key_values is used
|
|
if past_key_values is not None:
|
|
position_ids = create_position_ids_from_input_ids(
|
|
input_ids,
|
|
padding_idx=self.config.pad_token_id,
|
|
past_key_values_length=0,
|
|
)[:, -1:]
|
|
|
|
input_ids = input_ids[:, -1:]
|
|
# the image info. is already encoded into the past keys/values
|
|
image_embeds = None
|
|
image_embeds_position_mask = None
|
|
elif image_embeds_position_mask is not None:
|
|
# appending `False` to `image_embeds_position_mask` (because `input_ids` grows during generation)
|
|
batch_size, seq_len = input_ids.size()
|
|
mask_len = image_embeds_position_mask.size()[-1]
|
|
image_embeds_position_mask = torch.cat(
|
|
(
|
|
image_embeds_position_mask,
|
|
torch.zeros(size=(batch_size, seq_len - mask_len), dtype=torch.bool, device=input_ids.device),
|
|
),
|
|
dim=1,
|
|
)
|
|
|
|
return {
|
|
"input_ids": input_ids,
|
|
"image_embeds": image_embeds,
|
|
"image_embeds_position_mask": image_embeds_position_mask,
|
|
"past_key_values": past_key_values,
|
|
"attention_mask": attention_mask,
|
|
"position_ids": position_ids,
|
|
"use_cache": use_cache,
|
|
}
|
|
|
|
@staticmethod
|
|
# Copied from transformers.models.umt5.modeling_umt5.UMT5ForConditionalGeneration._reorder_cache
|
|
def _reorder_cache(past_key_values, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past_key_values:
|
|
reordered_past += (
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
)
|
|
return reordered_past
|
|
|
|
|
|
class Kosmos2ImageToTextProjection(nn.Module):
|
|
"""The layer that transforms the image model's output to part of the text model's input (namely, image features)"""
|
|
|
|
def __init__(self, config: Kosmos2Config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.vision_config.hidden_size, config.text_config.embed_dim)
|
|
self.latent_query = nn.Parameter(torch.randn(config.latent_query_num, config.text_config.embed_dim))
|
|
|
|
self.x_attn = KosmosTextAttention(
|
|
config.text_config,
|
|
config.text_config.embed_dim,
|
|
config.text_config.attention_heads,
|
|
dropout=config.text_config.attention_dropout,
|
|
is_decoder=False,
|
|
add_inner_attn_layernorm=False,
|
|
)
|
|
|
|
def forward(self, features):
|
|
hidden_states = self.dense(features)
|
|
|
|
# shape = [batch, latent_query_num, h_dim]
|
|
latent_query = self.latent_query.unsqueeze(0).expand(hidden_states.size(0), -1, -1)
|
|
key_value_states = torch.cat([hidden_states, latent_query], dim=1)
|
|
|
|
hidden_states, attn_weights, _ = self.x_attn(
|
|
hidden_states=latent_query,
|
|
encoder_hidden_states=key_value_states,
|
|
past_key_value=None,
|
|
attention_mask=None,
|
|
output_attentions=None,
|
|
)
|
|
|
|
return hidden_states, attn_weights
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
KOSMOS-2 Model for generating text and image features. The model consists of a vision encoder and a language model.
|
|
""",
|
|
KOSMOS2_START_DOCSTRING,
|
|
)
|
|
class Kosmos2Model(Kosmos2PreTrainedModel):
|
|
config_class = Kosmos2Config
|
|
main_input_name = "pixel_values"
|
|
|
|
def __init__(self, config: Kosmos2Config):
|
|
super().__init__(config)
|
|
|
|
self.text_model = Kosmos2TextModel(config.text_config)
|
|
self.vision_model = Kosmos2VisionModel(config.vision_config)
|
|
self.image_to_text_projection = Kosmos2ImageToTextProjection(config)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.text_model.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.text_model.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=Kosmos2ModelOutput, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.Tensor] = None,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
image_embeds_position_mask: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
image_embeds: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, Kosmos2ModelOutput]:
|
|
r"""
|
|
Returns:
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, Kosmos2Model
|
|
|
|
>>> model = Kosmos2Model.from_pretrained("microsoft/kosmos-2-patch14-224")
|
|
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
|
|
|
|
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> text = (
|
|
... "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863>"
|
|
... "</object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911>"
|
|
... "</object>"
|
|
... )
|
|
|
|
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_eos_token=True)
|
|
|
|
>>> last_hidden_state = model(
|
|
... pixel_values=inputs["pixel_values"],
|
|
... input_ids=inputs["input_ids"],
|
|
... attention_mask=inputs["attention_mask"],
|
|
... image_embeds_position_mask=inputs["image_embeds_position_mask"],
|
|
... ).last_hidden_state
|
|
>>> list(last_hidden_state.shape)
|
|
[1, 91, 2048]
|
|
```"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
vision_model_output = None
|
|
projection_attentions = None
|
|
if image_embeds is None:
|
|
if pixel_values is None:
|
|
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.")
|
|
|
|
vision_model_output = self.vision_model(
|
|
pixel_values=pixel_values,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
|
|
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
|
|
# normalized features
|
|
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
|
|
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
|
|
|
|
outputs = self.text_model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
image_embeds=image_embeds,
|
|
image_embeds_position_mask=image_embeds_position_mask,
|
|
head_mask=head_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
position_ids=position_ids,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
if not return_dict:
|
|
outputs = outputs + (image_embeds, projection_attentions, vision_model_output)
|
|
return tuple(output for output in outputs if output is not None)
|
|
|
|
return Kosmos2ModelOutput(
|
|
last_hidden_state=outputs.last_hidden_state,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
image_embeds=image_embeds,
|
|
projection_attentions=projection_attentions,
|
|
vision_model_output=vision_model_output,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
KOSMOS-2 Model for generating text and bounding boxes given an image. The model consists of a vision encoder and a
|
|
language model.
|
|
""",
|
|
KOSMOS2_START_DOCSTRING,
|
|
)
|
|
class Kosmos2ForConditionalGeneration(Kosmos2PreTrainedModel):
|
|
config_class = Kosmos2Config
|
|
main_input_name = "pixel_values"
|
|
_tied_weights_keys = ["text_model.lm_head.weight"]
|
|
|
|
def __init__(self, config: Kosmos2Config):
|
|
super().__init__(config)
|
|
|
|
self.text_model = Kosmos2TextForCausalLM(config.text_config)
|
|
self.vision_model = Kosmos2VisionModel(config.vision_config)
|
|
|
|
self.image_to_text_projection = Kosmos2ImageToTextProjection(config)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.text_model.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.text_model.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self) -> nn.Module:
|
|
return self.text_model.get_output_embeddings()
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.text_model.set_output_embeddings(new_embeddings)
|
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=Kosmos2ForConditionalGenerationModelOutput, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.Tensor] = None,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
image_embeds_position_mask: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
image_embeds: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, Kosmos2ForConditionalGenerationModelOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
|
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
|
|
|
Returns:
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, Kosmos2ForConditionalGeneration
|
|
|
|
>>> model = Kosmos2ForConditionalGeneration.from_pretrained("microsoft/kosmos-2-patch14-224")
|
|
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
|
|
|
|
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> prompt = "<grounding> An image of"
|
|
|
|
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
|
|
|
>>> generated_ids = model.generate(
|
|
... pixel_values=inputs["pixel_values"],
|
|
... input_ids=inputs["input_ids"],
|
|
... attention_mask=inputs["attention_mask"],
|
|
... image_embeds=None,
|
|
... image_embeds_position_mask=inputs["image_embeds_position_mask"],
|
|
... use_cache=True,
|
|
... max_new_tokens=64,
|
|
... )
|
|
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
>>> processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False)
|
|
>>> processed_text
|
|
'<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.'
|
|
|
|
>>> caption, entities = processor.post_process_generation(generated_text)
|
|
>>> caption
|
|
'An image of a snowman warming himself by a fire.'
|
|
|
|
>>> entities
|
|
[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]
|
|
```"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
vision_model_output = None
|
|
projection_attentions = None
|
|
if image_embeds is None:
|
|
if pixel_values is None:
|
|
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.")
|
|
|
|
vision_model_output = self.vision_model(
|
|
pixel_values=pixel_values,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
|
|
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
|
|
# normalized features
|
|
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
|
|
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
|
|
|
|
lm_outputs = self.text_model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
image_embeds=image_embeds,
|
|
image_embeds_position_mask=image_embeds_position_mask,
|
|
head_mask=head_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
position_ids=position_ids,
|
|
labels=labels,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
if not return_dict:
|
|
outputs = lm_outputs + (image_embeds, projection_attentions, vision_model_output)
|
|
return tuple(output for output in outputs if output is not None)
|
|
|
|
return Kosmos2ForConditionalGenerationModelOutput(
|
|
loss=lm_outputs.loss,
|
|
logits=lm_outputs.logits,
|
|
past_key_values=lm_outputs.past_key_values,
|
|
hidden_states=lm_outputs.hidden_states,
|
|
attentions=lm_outputs.attentions,
|
|
image_embeds=image_embeds,
|
|
projection_attentions=projection_attentions,
|
|
vision_model_output=vision_model_output,
|
|
)
|
|
|
|
def generate(
|
|
self,
|
|
pixel_values: Optional[torch.Tensor] = None,
|
|
image_embeds_position_mask: Optional[torch.Tensor] = None,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
image_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
):
|
|
# in order to allow `inputs` argument (as in `GenerationMixin`)
|
|
inputs = kwargs.pop("inputs", None)
|
|
if pixel_values is not None and inputs is not None:
|
|
raise ValueError(
|
|
f"`inputs`: {inputs} were passed alongside `pixel_values` which is not allowed."
|
|
f"Make sure to either pass `inputs` or pixel_values=..."
|
|
)
|
|
if pixel_values is None and inputs is not None:
|
|
pixel_values = inputs
|
|
|
|
if image_embeds is None:
|
|
vision_model_output = self.vision_model(pixel_values)
|
|
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
|
|
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
|
|
# normalized features
|
|
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
|
|
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
|
|
|
|
output = self.text_model.generate(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
image_embeds=image_embeds,
|
|
image_embeds_position_mask=image_embeds_position_mask,
|
|
**kwargs,
|
|
)
|
|
|
|
return output
|