ai-content-maker/.venv/Lib/site-packages/numba/tests/test_np_randomgen.py

1233 lines
52 KiB
Python

import numba
import numpy as np
import sys
import itertools
import gc
from numba import types
from numba.tests.support import TestCase, MemoryLeakMixin
from numba.np.random.generator_methods import _get_proper_func
from numba.np.random.generator_core import next_uint32, next_uint64, next_double
from numpy.random import MT19937, Generator
from numba.core.errors import TypingError
from numba.tests.support import run_in_new_process_caching, SerialMixin
# TODO: Following testing tolerance adjustments should be reduced
# once NumPy Generator's fmadd issue described below is resolved:
# https://github.com/numba/numba/pull/8038#issuecomment-1165571368
# The progress is being tracked as one of the tasks in:
# https://github.com/numba/numba/issues/8519
adjusted_ulp_prec = 2048
class TestHelperFuncs(TestCase):
def test_proper_func_provider(self):
def test_32bit_func():
return 32
def test_64bit_func():
return 64
self.assertEqual(_get_proper_func(test_32bit_func, test_64bit_func,
np.float64)[0](), 64)
self.assertEqual(_get_proper_func(test_32bit_func, test_64bit_func,
np.float32)[0](), 32)
# With any other datatype it should return a TypingError
with self.assertRaises(TypingError) as raises:
_get_proper_func(test_32bit_func, test_64bit_func, np.int32)
self.assertIn(
'Argument dtype is not one of the expected type(s)',
str(raises.exception)
)
with self.assertRaises(TypingError) as raises:
_get_proper_func(test_32bit_func, test_64bit_func, types.float64)
self.assertIn(
'Argument dtype is not one of the expected type(s)',
str(raises.exception)
)
def test_check_types(self):
rng = np.random.default_rng(1)
py_func = lambda x: x.normal(loc=(0,))
numba_func = numba.njit(cache=True)(py_func)
with self.assertRaises(TypingError) as raises:
numba_func(rng)
self.assertIn(
'Argument loc is not one of the expected type(s): '
+ '[<class \'numba.core.types.scalars.Float\'>, '
+ '<class \'numba.core.types.scalars.Integer\'>, '
+ '<class \'int\'>, <class \'float\'>]',
str(raises.exception)
)
def test_integers_arg_check(self):
rng = np.random.default_rng(1)
py_func = lambda x, low, high, dtype: \
x.integers(low=low, high=high, dtype=dtype, endpoint=True)
numba_func = numba.njit()(py_func)
numba_func_low = numba.njit()(py_func)
py_func = lambda x, low, high, dtype: \
x.integers(low=low, high=high, dtype=dtype, endpoint=False)
numba_func_endpoint_false = numba.njit()(py_func)
cases = [
# low, high, dtype
(np.iinfo(np.uint8).min, np.iinfo(np.uint8).max, np.uint8),
(np.iinfo(np.int8).min, np.iinfo(np.int8).max, np.int8),
(np.iinfo(np.uint16).min, np.iinfo(np.uint16).max, np.uint16),
(np.iinfo(np.int16).min, np.iinfo(np.int16).max, np.int16),
(np.iinfo(np.uint32).min, np.iinfo(np.uint32).max, np.uint32),
(np.iinfo(np.int32).min, np.iinfo(np.int32).max, np.int32),
]
for low, high, dtype in cases:
with self.subTest(low=low, high=high, dtype=dtype):
with self.assertRaises(ValueError) as raises:
# min - 1
numba_func_low(rng, low - 1, high, dtype)
self.assertIn(
'low is out of bounds',
str(raises.exception)
)
with self.assertRaises(ValueError) as raises:
# max + 1, endpoint=True
numba_func(rng, low, high + 1, dtype)
self.assertIn(
'high is out of bounds',
str(raises.exception)
)
with self.assertRaises(ValueError) as raises:
# max + 2, endpoint=False
numba_func_endpoint_false(rng, low, high + 2, dtype)
self.assertIn(
'high is out of bounds',
str(raises.exception)
)
low, high, dtype = (np.iinfo(np.uint64).min,
np.iinfo(np.uint64).max, np.uint64)
with self.assertRaises(ValueError) as raises:
# min - 1
numba_func_low(rng, low - 1, high, dtype)
self.assertIn(
'low is out of bounds',
str(raises.exception)
)
low, high, dtype = (np.iinfo(np.int64).min,
np.iinfo(np.int64).max, np.int64)
with self.assertRaises(ValueError) as raises:
# max + 1, endpoint=True
numba_func(rng, low, high + 1, dtype)
self.assertIn(
'high is out of bounds',
str(raises.exception)
)
with self.assertRaises(ValueError) as raises:
# max + 2, endpoint=False
numba_func_endpoint_false(rng, low, high + 2, dtype)
self.assertIn(
'high is out of bounds',
str(raises.exception)
)
with self.assertRaises(ValueError) as raises:
numba_func(rng, 105, 100, np.uint32)
self.assertIn(
'low is greater than high in given interval',
str(raises.exception)
)
def test_generator_caching():
nb_rng = np.random.default_rng(1)
np_rng = np.random.default_rng(1)
py_func = lambda x: x.random(10)
numba_func = numba.njit(cache=True)(py_func)
assert np.allclose(np_rng.random(10), numba_func(nb_rng))
class TestRandomGenerators(MemoryLeakMixin, TestCase):
def check_numpy_parity(self, distribution_func,
bitgen_type=None, seed=None,
test_size=None, test_dtype=None,
ulp_prec=5):
distribution_func = numba.njit(distribution_func)
if seed is None:
seed = 1
if bitgen_type is None:
numba_rng_instance = np.random.default_rng(seed=seed)
numpy_rng_instance = np.random.default_rng(seed=seed)
else:
numba_rng_instance = Generator(bitgen_type(seed))
numpy_rng_instance = Generator(bitgen_type(seed))
# Check parity for different size cases
numba_res = distribution_func(numba_rng_instance,
test_size, test_dtype)
numpy_res = distribution_func.py_func(numpy_rng_instance,
test_size, test_dtype)
if (isinstance(numba_res, np.ndarray) and
np.issubdtype(numba_res.dtype, np.floating)) \
or isinstance(numba_res, float):
# Float scalars and arrays
np.testing.assert_array_max_ulp(numpy_res, numba_res,
maxulp=ulp_prec, dtype=test_dtype)
else:
# Bool/int scalars and arrays
np.testing.assert_equal(numba_res, numpy_res)
# Check if the end state of both BitGenerators is same
# after drawing the distributions
numba_gen_state = numba_rng_instance.__getstate__()['state']
numpy_gen_state = numpy_rng_instance.__getstate__()['state']
for _state_key in numpy_gen_state:
self.assertPreciseEqual(numba_gen_state[_state_key],
numpy_gen_state[_state_key])
def _test_bitgen_func_parity(self, func_name, bitgen_func, seed=1):
numba_rng_instance = np.random.default_rng(seed=seed)
numpy_rng_instance = np.random.default_rng(seed=seed)
numpy_func = getattr(numpy_rng_instance.bit_generator.ctypes, func_name)
numpy_res = numpy_func(numpy_rng_instance.bit_generator.ctypes.state)
numba_func = numba.njit(lambda x: bitgen_func(x.bit_generator))
numba_res = numba_func(numba_rng_instance)
self.assertPreciseEqual(numba_res, numpy_res)
def _check_invalid_types(self, dist_func, arg_list,
valid_args, invalid_args):
rng = np.random.default_rng()
for idx, _arg in enumerate(arg_list):
curr_args = valid_args.copy()
curr_args[idx] = invalid_args[idx]
curr_args = [rng] + curr_args
nb_dist_func = numba.njit(dist_func)
with self.assertRaises(TypingError) as raises:
nb_dist_func(*curr_args)
self.assertIn(
f'Argument {_arg} is not one of the expected type(s):',
str(raises.exception)
)
def test_npgen_boxing_unboxing(self):
rng_instance = np.random.default_rng()
numba_func = numba.njit(lambda x: x)
self.assertEqual(rng_instance, numba_func(rng_instance))
self.assertEqual(id(rng_instance), id(numba_func(rng_instance)))
def test_npgen_boxing_refcount(self):
rng_instance = np.random.default_rng()
no_box = numba.njit(lambda x:x.random())
do_box = numba.njit(lambda x:x)
y = do_box(rng_instance)
gc.collect()
ref_1 = sys.getrefcount(rng_instance)
del y
no_box(rng_instance)
gc.collect()
ref_2 = sys.getrefcount(rng_instance)
self.assertEqual(ref_1, ref_2 + 1)
def test_bitgen_funcs(self):
func_names = ["next_uint32", "next_uint64", "next_double"]
funcs = [next_uint32, next_uint64, next_double]
for _func, _func_name in zip(funcs, func_names):
with self.subTest(_func=_func, _func_name=_func_name):
self._test_bitgen_func_parity(_func_name, _func)
def test_integers(self):
test_sizes = [None, (), (100,), (10, 20, 30)]
test_dtypes = [np.int64, np.int32, np.int16, np.int8,
np.uint64, np.uint32, np.uint16, np.uint8]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.integers(0, 100)
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None, ulp_prec=0)
dist_func = lambda x, size, dtype:\
x.integers(5, 10, size=size, dtype=dtype)
for _size in test_sizes:
for _dtype in test_dtypes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _dtype=_dtype,
_bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, _dtype, 0)
# Checking dtype = bool seperately
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:\
x.integers(False, True, size=size, dtype=np.bool_)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size,
_bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, np.bool_, 0)
# Test dtype casting for high and low
dist_func = lambda x, size, dtype: \
x.integers(np.uint8(0), np.int64(100))
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None)
dist_func = lambda x, low, high, size, dtype, endpoint:\
x.integers(low=low, high=high, size=size,
dtype=dtype, endpoint=endpoint)
self._check_invalid_types(dist_func,
['low', 'high', 'size', 'dtype', 'endpoint'],
[1, 5, (1,), np.int64, True],
['x', 'x', ('x',), np.float64, 'x'])
# Testing .integers() dtype wise
def test_integers_cases(self):
cases = [
# low, high, dtype
(5, 6, np.uint64), # rng == 0 (rng stands for range)
(5, 100, np.uint64), # rng <= 0xFFFFFFFF
(0, 0xFFFFFFFFFF, np.uint64), # rng > 0xFFFFFFFF
(0, 0xFFFFFFFFFFFFFFFF - 1, np.uint64),# rng == 0xFFFFFFFFFFFFFFFF-1
(0, 0xFFFFFFFFFFFFFFFF, np.uint64), # rng == 0xFFFFFFFFFFFFFFFF
(5, 6, np.int64), # rng == 0
(5, 100, np.int64), # rng <= 0xFFFFFFFF
(0, 0xFFFFFFFFFF, np.int64), # rng > 0xFFFFFFFF
(0, 0xFFFFFFFFFFFFFFF - 1, np.int64), # rng == 0xFFFFFFFFFFFFFFF - 1
(0, 0xFFFFFFFFFFFFFFF, np.int64), # rng == 0xFFFFFFFFFFFFFFF
(-0xFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFF, np.int64), # min/max
(5, 6, np.uint32), # rng == 0
(5, 100, np.uint32), # rng < 0xFFFFFFFF
(0, 0xFFFFFFFF - 1, np.uint32), # rng == 0xFFFFFFFF - 1
(0, 0xFFFFFFFF, np.uint32), # rng == 0xFFFFFFFF
(5, 6, np.int32), # rng == 0
(5, 100, np.int32), # rng < 0xFFFFFFFF
(0, 0xFFFFFFF - 1, np.int32), # rng == 0xFFFFFFF - 1
(0, 0xFFFFFFF, np.int32), # rng == 0xFFFFFFF
(-0xFFFFFFF, 0xFFFFFFF, np.int32),
(5, 6, np.uint16), # rng == 0
(5, 100, np.uint16), # rng < 0xFFFF
(0, 0xFFFF - 1, np.uint16), # rng == 0xFFFF - 1
(0, 0xFFFF, np.uint16), # rng == 0xFFFF
(5, 6, np.int16), # rng == 0
(5, 10, np.int16), # rng < 0xFFF
(0, 0xFFF - 1, np.int16), # rng == 0xFFF - 1
(0, 0xFFF, np.int16), # rng == 0xFFF
(-0xFFF, 0xFFF, np.int16),
(5, 6, np.uint8), # rng == 0
(5, 10, np.uint8), # rng < 0xFF
(0, 0xFF - 1, np.uint8), # rng == 0xFF - 1
(0, 0xFF, np.uint8), # rng == 0xFF
(5, 6, np.int8), # rng == 0
(5, 10, np.int8), # rng < 0xF
(0, 0xF - 1, np.int8), # rng == 0xF-1
(0, 0xF, np.int8), # rng == 0xF
(-0xF, 0xF, np.int8),
]
size = (2, 3)
for low, high, dtype in cases:
with self.subTest(low=low, high=high, dtype=dtype):
dist_func = lambda x, size, dtype:\
x.integers(low, high, size=size, dtype=dtype)
self.check_numpy_parity(dist_func, None,
None, size, dtype, 0)
def test_random(self):
test_sizes = [None, (), (100,), (10, 20, 30)]
test_dtypes = [np.float32, np.float64]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.random()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None)
dist_func = lambda x, size, dtype:x.random(size=size, dtype=dtype)
for _size in test_sizes:
for _dtype in test_dtypes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _dtype=_dtype,
_bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, _dtype)
dist_func = lambda x, size, dtype:\
x.random(size=size, dtype=dtype)
self._check_invalid_types(dist_func, ['size', 'dtype'],
[(1,), np.float64], [('x',), 0.])
def test_standard_normal(self):
test_sizes = [None, (), (100,), (10, 20, 30)]
test_dtypes = [np.float32, np.float64]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.standard_normal()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None)
dist_func = lambda x, size, dtype:\
x.standard_normal(size=size, dtype=dtype)
for _size in test_sizes:
for _dtype in test_dtypes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _dtype=_dtype,
_bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, _dtype)
dist_func = lambda x, size, dtype:\
x.standard_normal(size=size, dtype=dtype)
self._check_invalid_types(dist_func, ['size', 'dtype'],
[(1,), np.float32], [('x',), 0])
def test_standard_exponential(self):
test_sizes = [None, (), (100,), (10, 20, 30)]
test_dtypes = [np.float32, np.float64]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.standard_exponential()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None)
dist_func = lambda x, size, dtype:\
x.standard_exponential(size=size, dtype=dtype)
for _size in test_sizes:
for _dtype in test_dtypes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _dtype=_dtype,
_bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, _dtype)
dist_func = lambda x, method, size, dtype:\
x.standard_exponential(method=method, size=size, dtype=dtype)
self._check_invalid_types(dist_func, ['method', 'size', 'dtype'],
['zig', (1,), np.float32], [0, ('x',), 0])
def test_standard_exponential_inv(self):
test_sizes = [None, (), (100,), (10, 20, 30)]
test_dtypes = [np.float32, np.float64]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:\
x.standard_exponential(size=size, dtype=dtype, method='inv')
for _size in test_sizes:
for _dtype in test_dtypes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _dtype=_dtype,
_bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, _dtype)
def test_standard_gamma(self):
test_sizes = [None, (), (100,), (10, 20, 30)]
test_dtypes = [np.float32, np.float64]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype: \
x.standard_gamma(shape=5.0, size=size, dtype=dtype)
for _size in test_sizes:
for _dtype in test_dtypes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _dtype=_dtype,
_bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, _dtype,
adjusted_ulp_prec)
dist_func = lambda x, shape, size, dtype:\
x.standard_gamma(shape=shape, size=size, dtype=dtype)
self._check_invalid_types(dist_func, ['shape', 'size', 'dtype'],
[5.0, (1,), np.float32], ['x', ('x',), 0])
def test_normal(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.normal()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None,
ulp_prec=adjusted_ulp_prec)
dist_func = lambda x, size, dtype:x.normal(loc=1.5, scale=3, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, loc, scale, size:\
x.normal(loc=loc, scale=scale, size=size)
self._check_invalid_types(dist_func, ['loc', 'scale', 'size'],
[1.5, 3, (1,)], ['x', 'x', ('x',)])
def test_uniform(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.uniform()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None,
ulp_prec=adjusted_ulp_prec)
dist_func = lambda x, size, dtype:x.uniform(low=1.5, high=3, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, low, high, size:\
x.uniform(low=low, high=high, size=size)
self._check_invalid_types(dist_func, ['low', 'high', 'size'],
[1.5, 3, (1,)], ['x', 'x', ('x',)])
def test_exponential(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.exponential()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None)
dist_func = lambda x, size, dtype:x.exponential(scale=1.5, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, scale, size:\
x.exponential(scale=scale, size=size)
self._check_invalid_types(dist_func, ['scale', 'size'],
[1.5, (1,)], ['x', ('x',)])
def test_gamma(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.gamma(shape=5.0, scale=1.5,
size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, shape, scale, size:\
x.gamma(shape=shape, scale=scale, size=size)
self._check_invalid_types(dist_func, ['shape', 'scale', 'size'],
[5.0, 1.5, (1,)], ['x', 'x', ('x',)])
def test_beta(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.beta(a=1.5, b=2.5, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, a, b, size:x.beta(a=a, b=b, size=size)
self._check_invalid_types(dist_func, ['a', 'b', 'size'],
[5.0, 1.5, (1,)], ['x', 'x', ('x',)])
def test_f(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.f(dfnum=2, dfden=3, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, dfnum, dfden, size:\
x.f(dfnum=dfnum, dfden=dfden, size=size)
self._check_invalid_types(dist_func, ['dfnum', 'dfden', 'size'],
[5, 1, (1,)], ['x', 'x', ('x',)])
def test_chisquare(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.chisquare(df=2, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, df, size:\
x.chisquare(df=df, size=size)
self._check_invalid_types(dist_func, ['df', 'size'],
[2, (1,)], ['x', ('x',)])
def test_standard_cauchy(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.standard_cauchy()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None)
dist_func = lambda x, size, dtype:x.standard_cauchy(size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, size:x.standard_cauchy(size=size)
self._check_invalid_types(dist_func, ['size'],
[(1,)], [('x',)])
def test_pareto(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.pareto(a=1.0, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, a, size:x.pareto(a=a, size=size)
self._check_invalid_types(dist_func, ['a', 'size'],
[1, (1,)], ['x', ('x',)])
def test_weibull(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.weibull(a=1.0, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, a, size:x.weibull(a=a, size=size)
self._check_invalid_types(dist_func, ['a', 'size'],
[1, (1,)], ['x', ('x',)])
def test_power(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.power(a=0.75, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, a, size:x.power(a=a, size=size)
self._check_invalid_types(dist_func, ['a', 'size'],
[0.75, (1,)], ['x', ('x',)])
def test_laplace(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.laplace()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None,
ulp_prec=adjusted_ulp_prec)
dist_func = lambda x, size, dtype:\
x.laplace(loc=1.0, scale=1.5, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, loc, scale, size:\
x.laplace(loc=loc, scale=scale, size=size)
self._check_invalid_types(dist_func, ['loc', 'scale', 'size'],
[1.0, 1.5, (1,)], ['x', 'x', ('x',)])
def test_logistic(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.logistic()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None,
ulp_prec=adjusted_ulp_prec)
dist_func = lambda x, size, dtype:\
x.logistic(loc=1.0,scale=1.5, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, loc, scale, size:\
x.logistic(loc=loc, scale=scale, size=size)
self._check_invalid_types(dist_func, ['loc', 'scale', 'size'],
[1.0, 1.5, (1,)], ['x', 'x', ('x',)])
def test_lognormal(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.lognormal()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None,
ulp_prec=adjusted_ulp_prec)
dist_func = lambda x, size, dtype:\
x.lognormal(mean=5.0, sigma=1.5, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, mean, sigma, size:\
x.lognormal(mean=mean, sigma=sigma, size=size)
self._check_invalid_types(dist_func, ['mean', 'sigma', 'size'],
[1.0, 1.5, (1,)], ['x', 'x', ('x',)])
def test_rayleigh(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
# Test with no arguments
dist_func = lambda x, size, dtype:x.rayleigh()
with self.subTest():
self.check_numpy_parity(dist_func, test_size=None,
test_dtype=None)
dist_func = lambda x, size, dtype:x.rayleigh(scale=1.5, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, scale, size:x.rayleigh(scale=scale, size=size)
self._check_invalid_types(dist_func, ['scale', 'size'],
[1.5, (1,)], ['x', ('x',)])
def test_standard_t(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.standard_t(df=2, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, df, size:x.standard_t(df=df, size=size)
self._check_invalid_types(dist_func, ['df', 'size'],
[2, (1,)], ['x', ('x',)])
def test_wald(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.wald(mean=5.0, scale=1.5, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, mean, scale, size:\
x.wald(mean=mean, scale=scale, size=size)
self._check_invalid_types(dist_func, ['mean', 'scale', 'size'],
[1.0, 1.5, (1,)], ['x', 'x', ('x',)])
def test_geometric(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.geometric(p=0.75, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, p, size:x.geometric(p=p, size=size)
self._check_invalid_types(dist_func, ['p', 'size'],
[0.75, (1,)], ['x', ('x',)])
def test_zipf(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.zipf(a=1.5, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, a, size:x.zipf(a=a, size=size)
self._check_invalid_types(dist_func, ['a', 'size'],
[1, (1,)], ['x', ('x',)])
def test_triangular(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:\
x.triangular(left=0, mode=3, right=5, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, left, mode, right, size:\
x.triangular(left=left, mode=mode, right=right, size=size)
self._check_invalid_types(dist_func, ['left', 'mode', 'right', 'size'],
[0, 3, 5, (1,)], ['x', 'x', 'x', ('x',)])
def test_poisson(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:x.poisson(lam=15, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, lam, size:x.poisson(lam=lam, size=size)
self._check_invalid_types(dist_func, ['lam', 'size'],
[15, (1,)], ['x', ('x',)])
def test_negative_binomial(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:\
x.negative_binomial(n=1, p=0.1, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, n, p, size:\
x.negative_binomial(n=n, p=p, size=size)
self._check_invalid_types(dist_func, ['n', 'p', 'size'],
[1, 0.75, (1,)], ['x', 'x', ('x',)])
# NumPy tests at:
# https://github.com/numpy/numpy/blob/95e3e7f445407e4f355b23d6a9991d8774f0eb0c/numpy/random/tests/test_generator_mt19937.py#L936
# Written in following format for semblance with existing Generator tests.
def test_shuffle(self):
test_sizes = [(10, 20, 30)]
bitgen_types = [None, MT19937]
axes = [0, 1, 2]
for _size, _bitgen, _axis in itertools.product(test_sizes,
bitgen_types,
axes):
with self.subTest(_size=_size, _bitgen=_bitgen, _axis=_axis):
def dist_func(x, size, dtype):
arr = x.random(size=size)
x.shuffle(arr, axis=_axis)
return arr
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
0)
def test_shuffle_empty(self):
a = np.array([])
b = np.array([])
def dist_func(x, arr):
x.shuffle(arr)
return arr
nb_func = numba.njit(dist_func)
rng = lambda: np.random.default_rng(1)
self.assertPreciseEqual(dist_func(rng(), a), nb_func(rng(), b))
def test_shuffle_check(self):
self.disable_leak_check()
def dist_func(x, arr, axis):
x.shuffle(arr, axis=axis)
return arr
self._check_invalid_types(dist_func, ['x', 'axis'],
[np.array([3,4,5]), 0], ['x', 'x'])
rng = np.random.default_rng(1)
with self.assertRaises(IndexError) as raises:
numba.njit(dist_func)(rng, np.array([3,4,5]), 2)
self.assertIn(
'Axis is out of bounds for the given array',
str(raises.exception)
)
# NumPy tests at:
# https://github.com/numpy/numpy/blob/95e3e7f445407e4f355b23d6a9991d8774f0eb0c/numpy/random/tests/test_generator_mt19937.py#L1030
# Written in following format for semblance with existing Generator tests.
def test_permutation(self):
test_sizes = [(10, 20, 30)]
bitgen_types = [None, MT19937]
axes = [0, 1, 2, -1, -2]
for _size, _bitgen, _axis in itertools.product(test_sizes,
bitgen_types,
axes):
with self.subTest(_size=_size, _bitgen=_bitgen, _axis=_axis):
def dist_func(x, size, dtype):
arr = x.random(size=size)
return x.permutation(arr, axis=1)
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
0)
# Test that permutation is actually done on a copy of the array
dist_func = numba.njit(lambda rng, arr: rng.permutation(arr))
rng = np.random.default_rng()
arr = rng.random(size=(10, 20))
arr_cpy = arr.copy()
dist_func(rng, arr)
self.assertPreciseEqual(arr, arr_cpy)
def test_permutation_exception(self):
self.disable_leak_check()
def dist_func(x, arr, axis):
return x.permutation(arr, axis=axis)
self._check_invalid_types(dist_func, ['x', 'axis'],
[np.array([3,4,5]), 0], ['x', 'x'])
rng = np.random.default_rng(1)
with self.assertRaises(IndexError) as raises:
numba.njit(dist_func)(rng, np.array([3,4,5]), 2)
self.assertIn(
'Axis is out of bounds for the given array',
str(raises.exception)
)
with self.assertRaises(IndexError) as raises:
numba.njit(dist_func)(rng, np.array([3,4,5]), -2)
self.assertIn(
'Axis is out of bounds for the given array',
str(raises.exception)
)
def test_permutation_empty(self):
a = np.array([])
b = np.array([])
def dist_func(x, arr):
return x.permutation(arr)
nb_func = numba.njit(dist_func)
rng = lambda: np.random.default_rng(1)
self.assertPreciseEqual(dist_func(rng(), a), nb_func(rng(), b))
def test_noncentral_chisquare(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:\
x.noncentral_chisquare(3.0, 20.0, size=size)
for _size, _bitgen in itertools.product(test_sizes, bitgen_types):
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, df, nonc, size:\
x.noncentral_chisquare(df=df, nonc=nonc, size=size)
valid_args = [3.0, 5.0, (1,)]
self._check_invalid_types(dist_func, ['df', 'nonc', 'size'],
valid_args, ['x', 'x', ('x',)])
# Test argument bounds
rng = np.random.default_rng()
valid_args = [rng] + valid_args
nb_dist_func = numba.njit(dist_func)
with self.assertRaises(ValueError) as raises:
curr_args = valid_args.copy()
# Change df to an invalid value
curr_args[1] = 0
nb_dist_func(*curr_args)
self.assertIn('df <= 0', str(raises.exception))
with self.assertRaises(ValueError) as raises:
curr_args = valid_args.copy()
# Change nonc to an invalid value
curr_args[2] = -1
nb_dist_func(*curr_args)
self.assertIn('nonc < 0', str(raises.exception))
# Exceptions leak references
self.disable_leak_check()
def test_noncentral_f(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:\
x.noncentral_f(3.0, 20.0, 3.0, size=size)
for _size, _bitgen in itertools.product(test_sizes, bitgen_types):
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, dfnum, dfden, nonc, size:\
x.noncentral_f(dfnum=dfnum, dfden=dfden, nonc=nonc, size=size)
valid_args = [3.0, 5.0, 3.0, (1,)]
self._check_invalid_types(dist_func, ['dfnum', 'dfden', 'nonc', 'size'],
valid_args, ['x', 'x', 'x', ('x',)])
# Test argument bounds
rng = np.random.default_rng()
valid_args = [rng] + valid_args
nb_dist_func = numba.njit(dist_func)
with self.assertRaises(ValueError) as raises:
curr_args = valid_args.copy()
# Change dfnum to an invalid value
curr_args[1] = 0
nb_dist_func(*curr_args)
self.assertIn('dfnum <= 0', str(raises.exception))
with self.assertRaises(ValueError) as raises:
curr_args = valid_args.copy()
# Change dfden to an invalid value
curr_args[2] = 0
nb_dist_func(*curr_args)
self.assertIn('dfden <= 0', str(raises.exception))
with self.assertRaises(ValueError) as raises:
curr_args = valid_args.copy()
# Change nonc to an invalid value
curr_args[3] = -1
nb_dist_func(*curr_args)
self.assertIn('nonc < 0', str(raises.exception))
# Exceptions leak references
self.disable_leak_check()
def test_logseries(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:\
x.logseries(0.3, size=size)
for _size, _bitgen in itertools.product(test_sizes, bitgen_types):
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None)
dist_func = lambda x, p, size:\
x.logseries(p=p, size=size)
valid_args = [0.3, (1,)]
self._check_invalid_types(dist_func, ['p', 'size'],
valid_args, ['x', ('x',)])
# Test argument bounds
rng = np.random.default_rng(1)
valid_args = [rng] + valid_args
nb_dist_func = numba.njit(dist_func)
for _p in [-0.1, 1, np.nan]:
with self.assertRaises(ValueError) as raises:
curr_args = valid_args.copy()
# Change p to an invalid negative, positive and nan value
curr_args[1] = _p
nb_dist_func(*curr_args)
self.assertIn('p < 0, p >= 1 or p is NaN', str(raises.exception))
# Exceptions leak references
self.disable_leak_check()
def test_binomial(self):
# For this test dtype argument is never used, so we pass [None] as dtype
# to make sure it runs only once with default system type.
test_sizes = [None, (), (100,), (10, 20, 30)]
bitgen_types = [None, MT19937]
dist_func = lambda x, size, dtype:\
x.binomial(n=1, p=0.1, size=size)
for _size in test_sizes:
for _bitgen in bitgen_types:
with self.subTest(_size=_size, _bitgen=_bitgen):
self.check_numpy_parity(dist_func, _bitgen,
None, _size, None,
adjusted_ulp_prec)
dist_func = lambda x, n, p, size:\
x.binomial(n=n, p=p, size=size)
self._check_invalid_types(dist_func, ['n', 'p', 'size'],
[1, 0.75, (1,)], ['x', 'x', ('x',)])
def test_binomial_cases(self):
cases = [
(1, 0.1), # p <= 0.5 && n * p <= 30
(50, 0.9), # p > 0.5 && n * p <= 30
(100, 0.4), # p <= 0.5 && n * p > 30
(100, 0.9) # p > 0.5 && n * p > 30
]
size = None
for n, p in cases:
with self.subTest(n=n, p=p):
dist_func = lambda x, size, dtype:\
x.binomial(n, p, size=size)
self.check_numpy_parity(dist_func, None,
None, size, None, 0)
class TestGeneratorCaching(TestCase, SerialMixin):
def test_randomgen_caching(self):
nb_rng = np.random.default_rng(1)
np_rng = np.random.default_rng(1)
numba_func = numba.njit(lambda x: x.random(10), cache=True)
self.assertPreciseEqual(np_rng.random(10), numba_func(nb_rng))
# Run the function twice to make sure caching doesn't break anything.
self.assertPreciseEqual(np_rng.random(10), numba_func(nb_rng))
# Check that the function can be retrieved successfully from the cache.
res = run_in_new_process_caching(test_generator_caching)
self.assertEqual(res['exitcode'], 0)