291 lines
9.6 KiB
Python
291 lines
9.6 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays.sparse import (
|
|
SparseArray,
|
|
SparseDtype,
|
|
)
|
|
|
|
arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])
|
|
arr = SparseArray(arr_data)
|
|
|
|
|
|
class TestGetitem:
|
|
def test_getitem(self):
|
|
dense = arr.to_dense()
|
|
for i in range(len(arr)):
|
|
tm.assert_almost_equal(arr[i], dense[i])
|
|
tm.assert_almost_equal(arr[-i], dense[-i])
|
|
|
|
def test_getitem_arraylike_mask(self):
|
|
arr = SparseArray([0, 1, 2])
|
|
result = arr[[True, False, True]]
|
|
expected = SparseArray([0, 2])
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"slc",
|
|
[
|
|
np.s_[:],
|
|
np.s_[1:10],
|
|
np.s_[1:100],
|
|
np.s_[10:1],
|
|
np.s_[:-3],
|
|
np.s_[-5:-4],
|
|
np.s_[:-12],
|
|
np.s_[-12:],
|
|
np.s_[2:],
|
|
np.s_[2::3],
|
|
np.s_[::2],
|
|
np.s_[::-1],
|
|
np.s_[::-2],
|
|
np.s_[1:6:2],
|
|
np.s_[:-6:-2],
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"as_dense", [[np.nan] * 10, [1] * 10, [np.nan] * 5 + [1] * 5, []]
|
|
)
|
|
def test_getslice(self, slc, as_dense):
|
|
as_dense = np.array(as_dense)
|
|
arr = SparseArray(as_dense)
|
|
|
|
result = arr[slc]
|
|
expected = SparseArray(as_dense[slc])
|
|
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
def test_getslice_tuple(self):
|
|
dense = np.array([np.nan, 0, 3, 4, 0, 5, np.nan, np.nan, 0])
|
|
|
|
sparse = SparseArray(dense)
|
|
res = sparse[(slice(4, None),)]
|
|
exp = SparseArray(dense[4:])
|
|
tm.assert_sp_array_equal(res, exp)
|
|
|
|
sparse = SparseArray(dense, fill_value=0)
|
|
res = sparse[(slice(4, None),)]
|
|
exp = SparseArray(dense[4:], fill_value=0)
|
|
tm.assert_sp_array_equal(res, exp)
|
|
|
|
msg = "too many indices for array"
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse[4:, :]
|
|
|
|
with pytest.raises(IndexError, match=msg):
|
|
# check numpy compat
|
|
dense[4:, :]
|
|
|
|
def test_boolean_slice_empty(self):
|
|
arr = SparseArray([0, 1, 2])
|
|
res = arr[[False, False, False]]
|
|
assert res.dtype == arr.dtype
|
|
|
|
def test_getitem_bool_sparse_array(self):
|
|
# GH 23122
|
|
spar_bool = SparseArray([False, True] * 5, dtype=np.bool_, fill_value=True)
|
|
exp = SparseArray([np.nan, 2, np.nan, 5, 6])
|
|
tm.assert_sp_array_equal(arr[spar_bool], exp)
|
|
|
|
spar_bool = ~spar_bool
|
|
res = arr[spar_bool]
|
|
exp = SparseArray([np.nan, 1, 3, 4, np.nan])
|
|
tm.assert_sp_array_equal(res, exp)
|
|
|
|
spar_bool = SparseArray(
|
|
[False, True, np.nan] * 3, dtype=np.bool_, fill_value=np.nan
|
|
)
|
|
res = arr[spar_bool]
|
|
exp = SparseArray([np.nan, 3, 5])
|
|
tm.assert_sp_array_equal(res, exp)
|
|
|
|
def test_getitem_bool_sparse_array_as_comparison(self):
|
|
# GH 45110
|
|
arr = SparseArray([1, 2, 3, 4, np.nan, np.nan], fill_value=np.nan)
|
|
res = arr[arr > 2]
|
|
exp = SparseArray([3.0, 4.0], fill_value=np.nan)
|
|
tm.assert_sp_array_equal(res, exp)
|
|
|
|
def test_get_item(self):
|
|
zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0)
|
|
|
|
assert np.isnan(arr[1])
|
|
assert arr[2] == 1
|
|
assert arr[7] == 5
|
|
|
|
assert zarr[0] == 0
|
|
assert zarr[2] == 1
|
|
assert zarr[7] == 5
|
|
|
|
errmsg = "must be an integer between -10 and 10"
|
|
|
|
with pytest.raises(IndexError, match=errmsg):
|
|
arr[11]
|
|
|
|
with pytest.raises(IndexError, match=errmsg):
|
|
arr[-11]
|
|
|
|
assert arr[-1] == arr[len(arr) - 1]
|
|
|
|
|
|
class TestSetitem:
|
|
def test_set_item(self):
|
|
arr = SparseArray(arr_data).copy()
|
|
|
|
def setitem():
|
|
arr[5] = 3
|
|
|
|
def setslice():
|
|
arr[1:5] = 2
|
|
|
|
with pytest.raises(TypeError, match="assignment via setitem"):
|
|
setitem()
|
|
|
|
with pytest.raises(TypeError, match="assignment via setitem"):
|
|
setslice()
|
|
|
|
|
|
class TestTake:
|
|
def test_take_scalar_raises(self):
|
|
msg = "'indices' must be an array, not a scalar '2'."
|
|
with pytest.raises(ValueError, match=msg):
|
|
arr.take(2)
|
|
|
|
def test_take(self):
|
|
exp = SparseArray(np.take(arr_data, [2, 3]))
|
|
tm.assert_sp_array_equal(arr.take([2, 3]), exp)
|
|
|
|
exp = SparseArray(np.take(arr_data, [0, 1, 2]))
|
|
tm.assert_sp_array_equal(arr.take([0, 1, 2]), exp)
|
|
|
|
def test_take_all_empty(self):
|
|
a = pd.array([0, 0], dtype=SparseDtype("int64"))
|
|
result = a.take([0, 1], allow_fill=True, fill_value=np.nan)
|
|
tm.assert_sp_array_equal(a, result)
|
|
|
|
def test_take_fill_value(self):
|
|
data = np.array([1, np.nan, 0, 3, 0])
|
|
sparse = SparseArray(data, fill_value=0)
|
|
|
|
exp = SparseArray(np.take(data, [0]), fill_value=0)
|
|
tm.assert_sp_array_equal(sparse.take([0]), exp)
|
|
|
|
exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0)
|
|
tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp)
|
|
|
|
def test_take_negative(self):
|
|
exp = SparseArray(np.take(arr_data, [-1]))
|
|
tm.assert_sp_array_equal(arr.take([-1]), exp)
|
|
|
|
exp = SparseArray(np.take(arr_data, [-4, -3, -2]))
|
|
tm.assert_sp_array_equal(arr.take([-4, -3, -2]), exp)
|
|
|
|
def test_bad_take(self):
|
|
with pytest.raises(IndexError, match="bounds"):
|
|
arr.take([11])
|
|
|
|
def test_take_filling(self):
|
|
# similar tests as GH 12631
|
|
sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4])
|
|
result = sparse.take(np.array([1, 0, -1]))
|
|
expected = SparseArray([np.nan, np.nan, 4])
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
# TODO: actionable?
|
|
# XXX: test change: fill_value=True -> allow_fill=True
|
|
result = sparse.take(np.array([1, 0, -1]), allow_fill=True)
|
|
expected = SparseArray([np.nan, np.nan, np.nan])
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
# allow_fill=False
|
|
result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
|
|
expected = SparseArray([np.nan, np.nan, 4])
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
msg = "Invalid value in 'indices'"
|
|
with pytest.raises(ValueError, match=msg):
|
|
sparse.take(np.array([1, 0, -2]), allow_fill=True)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
sparse.take(np.array([1, 0, -5]), allow_fill=True)
|
|
|
|
msg = "out of bounds value in 'indices'"
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse.take(np.array([1, -6]))
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse.take(np.array([1, 5]))
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse.take(np.array([1, 5]), allow_fill=True)
|
|
|
|
def test_take_filling_fill_value(self):
|
|
# same tests as GH#12631
|
|
sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0)
|
|
result = sparse.take(np.array([1, 0, -1]))
|
|
expected = SparseArray([0, np.nan, 4], fill_value=0)
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
# fill_value
|
|
result = sparse.take(np.array([1, 0, -1]), allow_fill=True)
|
|
# TODO: actionable?
|
|
# XXX: behavior change.
|
|
# the old way of filling self.fill_value doesn't follow EA rules.
|
|
# It's supposed to be self.dtype.na_value (nan in this case)
|
|
expected = SparseArray([0, np.nan, np.nan], fill_value=0)
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
# allow_fill=False
|
|
result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
|
|
expected = SparseArray([0, np.nan, 4], fill_value=0)
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
msg = "Invalid value in 'indices'."
|
|
with pytest.raises(ValueError, match=msg):
|
|
sparse.take(np.array([1, 0, -2]), allow_fill=True)
|
|
with pytest.raises(ValueError, match=msg):
|
|
sparse.take(np.array([1, 0, -5]), allow_fill=True)
|
|
|
|
msg = "out of bounds value in 'indices'"
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse.take(np.array([1, -6]))
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse.take(np.array([1, 5]))
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse.take(np.array([1, 5]), fill_value=True)
|
|
|
|
@pytest.mark.parametrize("kind", ["block", "integer"])
|
|
def test_take_filling_all_nan(self, kind):
|
|
sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan], kind=kind)
|
|
result = sparse.take(np.array([1, 0, -1]))
|
|
expected = SparseArray([np.nan, np.nan, np.nan], kind=kind)
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
result = sparse.take(np.array([1, 0, -1]), fill_value=True)
|
|
expected = SparseArray([np.nan, np.nan, np.nan], kind=kind)
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
msg = "out of bounds value in 'indices'"
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse.take(np.array([1, -6]))
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse.take(np.array([1, 5]))
|
|
with pytest.raises(IndexError, match=msg):
|
|
sparse.take(np.array([1, 5]), fill_value=True)
|
|
|
|
|
|
class TestWhere:
|
|
def test_where_retain_fill_value(self):
|
|
# GH#45691 don't lose fill_value on _where
|
|
arr = SparseArray([np.nan, 1.0], fill_value=0)
|
|
|
|
mask = np.array([True, False])
|
|
|
|
res = arr._where(~mask, 1)
|
|
exp = SparseArray([1, 1.0], fill_value=0)
|
|
tm.assert_sp_array_equal(res, exp)
|
|
|
|
ser = pd.Series(arr)
|
|
res = ser.where(~mask, 1)
|
|
tm.assert_series_equal(res, pd.Series(exp))
|