ai-content-maker/.venv/Lib/site-packages/sympy/integrals/tests/test_transforms.py

637 lines
26 KiB
Python

from sympy.integrals.transforms import (
mellin_transform, inverse_mellin_transform,
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform,
cosine_transform, inverse_cosine_transform,
hankel_transform, inverse_hankel_transform,
FourierTransform, SineTransform, CosineTransform, InverseFourierTransform,
InverseSineTransform, InverseCosineTransform, IntegralTransformError)
from sympy.integrals.laplace import (
laplace_transform, inverse_laplace_transform)
from sympy.core.function import Function, expand_mul
from sympy.core import EulerGamma
from sympy.core.numbers import I, Rational, oo, pi
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, symbols
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import re, unpolarify
from sympy.functions.elementary.exponential import exp, exp_polar, log
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import atan, cos, sin, tan
from sympy.functions.special.bessel import besseli, besselj, besselk, bessely
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.error_functions import erf, expint
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import meijerg
from sympy.simplify.gammasimp import gammasimp
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.trigsimp import trigsimp
from sympy.testing.pytest import XFAIL, slow, skip, raises
from sympy.abc import x, s, a, b, c, d
nu, beta, rho = symbols('nu beta rho')
def test_undefined_function():
from sympy.integrals.transforms import MellinTransform
f = Function('f')
assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s)
assert mellin_transform(f(x) + exp(-x), x, s) == \
(MellinTransform(f(x), x, s) + gamma(s + 1)/s, (0, oo), True)
def test_free_symbols():
f = Function('f')
assert mellin_transform(f(x), x, s).free_symbols == {s}
assert mellin_transform(f(x)*a, x, s).free_symbols == {s, a}
def test_as_integral():
from sympy.integrals.integrals import Integral
f = Function('f')
assert mellin_transform(f(x), x, s).rewrite('Integral') == \
Integral(x**(s - 1)*f(x), (x, 0, oo))
assert fourier_transform(f(x), x, s).rewrite('Integral') == \
Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo))
assert laplace_transform(f(x), x, s, noconds=True).rewrite('Integral') == \
Integral(f(x)*exp(-s*x), (x, 0, oo))
assert str(2*pi*I*inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \
== "Integral(f(s)/x**s, (s, _c - oo*I, _c + oo*I))"
assert str(2*pi*I*inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \
"Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))"
assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \
Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo))
# NOTE this is stuck in risch because meijerint cannot handle it
@slow
@XFAIL
def test_mellin_transform_fail():
skip("Risch takes forever.")
MT = mellin_transform
bpos = symbols('b', positive=True)
# bneg = symbols('b', negative=True)
expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2)
# TODO does not work with bneg, argument wrong. Needs changes to matching.
assert MT(expr.subs(b, -bpos), x, s) == \
((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s)
*gamma(1 - a - 2*s)/gamma(1 - s),
(-re(a), -re(a)/2 + S.Half), True)
expr = (sqrt(x + b**2) + b)**a
assert MT(expr.subs(b, -bpos), x, s) == \
(
2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2*
s)*gamma(a + s)/gamma(-s + 1),
(-re(a), -re(a)/2), True)
# Test exponent 1:
assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \
(-bpos**(2*s + 1)*gamma(s)*gamma(-s - S.Half)/(2*sqrt(pi)),
(-1, Rational(-1, 2)), True)
def test_mellin_transform():
from sympy.functions.elementary.miscellaneous import (Max, Min)
MT = mellin_transform
bpos = symbols('b', positive=True)
# 8.4.2
assert MT(x**nu*Heaviside(x - 1), x, s) == \
(-1/(nu + s), (-oo, -re(nu)), True)
assert MT(x**nu*Heaviside(1 - x), x, s) == \
(1/(nu + s), (-re(nu), oo), True)
assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \
(gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(beta) > 0)
assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \
(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
(-oo, 1 - re(beta)), re(beta) > 0)
assert MT((1 + x)**(-rho), x, s) == \
(gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True)
assert MT(abs(1 - x)**(-rho), x, s) == (
2*sin(pi*rho/2)*gamma(1 - rho)*
cos(pi*(s - rho/2))*gamma(s)*gamma(rho-s)/pi,
(0, re(rho)), re(rho) < 1)
mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x)
+ a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s)
assert mt[1], mt[2] == ((0, -re(beta) + 1), re(beta) > 0)
assert MT((x**a - b**a)/(x - b), x, s)[0] == \
pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s)))
assert MT((x**a - bpos**a)/(x - bpos), x, s) == \
(pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))),
(Max(0, -re(a)), Min(1, 1 - re(a))), True)
expr = (sqrt(x + b**2) + b)**a
assert MT(expr.subs(b, bpos), x, s) == \
(-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1),
(0, -re(a)/2), True)
expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2)
assert MT(expr.subs(b, bpos), x, s) == \
(2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s)
*gamma(1 - a - 2*s)/gamma(1 - a - s),
(0, -re(a)/2 + S.Half), True)
# 8.4.2
assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True)
assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True)
# 8.4.5
assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True)
assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True)
assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True)
assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True)
assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True)
assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True)
# 8.4.14
assert MT(erf(sqrt(x)), x, s) == \
(-gamma(s + S.Half)/(sqrt(pi)*s), (Rational(-1, 2), 0), True)
def test_mellin_transform2():
MT = mellin_transform
# TODO we cannot currently do these (needs summation of 3F2(-1))
# this also implies that they cannot be written as a single g-function
# (although this is possible)
mt = MT(log(x)/(x + 1), x, s)
assert mt[1:] == ((0, 1), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
mt = MT(log(x)**2/(x + 1), x, s)
assert mt[1:] == ((0, 1), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
mt = MT(log(x)/(x + 1)**2, x, s)
assert mt[1:] == ((0, 2), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
@slow
def test_mellin_transform_bessel():
from sympy.functions.elementary.miscellaneous import Max
MT = mellin_transform
# 8.4.19
assert MT(besselj(a, 2*sqrt(x)), x, s) == \
(gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True)
assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(-2*s + S.Half)*gamma(a/2 + s + S.Half)/(
gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), (
-re(a)/2 - S.Half, Rational(1, 4)), True)
assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(a/2 + s)*gamma(-2*s + S.Half)/(
gamma(-a/2 - s + S.Half)*gamma(a - 2*s + 1)), (
-re(a)/2, Rational(1, 4)), True)
assert MT(besselj(a, sqrt(x))**2, x, s) == \
(gamma(a + s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
(-re(a), S.Half), True)
assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
(gamma(s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
(0, S.Half), True)
# NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
# I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(gamma(1 - s)*gamma(a + s - S.Half)
/ (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + S.Half)),
(S.Half - re(a), S.Half), True)
assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
(4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s)
/ (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2)
*gamma( 1 - s + (a + b)/2)),
(-(re(a) + re(b))/2, S.Half), True)
assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
((Max(re(a), -re(a)), S.Half), True)
# Section 8.4.20
assert MT(bessely(a, 2*sqrt(x)), x, s) == \
(-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi,
(Max(-re(a)/2, re(a)/2), Rational(3, 4)), True)
assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*sin(pi*(a/2 - s))*gamma(S.Half - 2*s)
* gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s)
/ (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
(Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True)
assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S.Half - 2*s)
/ (sqrt(pi)*gamma(S.Half - s - a/2)*gamma(S.Half - s + a/2)),
(Max(-re(a)/2, re(a)/2), Rational(1, 4)), True)
assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S.Half - s)
/ (pi**S('3/2')*gamma(1 + a - s)),
(Max(-re(a), 0), S.Half), True)
assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
(-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s)
* gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
/ (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
(Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S.Half), True)
# NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x))
# are a mess (no matter what way you look at it ...)
assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \
((Max(-re(a), 0, re(a)), S.Half), True)
# Section 8.4.22
# TODO we can't do any of these (delicate cancellation)
# Section 8.4.23
assert MT(besselk(a, 2*sqrt(x)), x, s) == \
(gamma(
s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(
a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)*
gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True)
# TODO bessely(a, x)*besselk(a, x) is a mess
assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(gamma(s)*gamma(
a + s)*gamma(-s + S.Half)/(2*sqrt(pi)*gamma(a - s + 1)),
(Max(-re(a), 0), S.Half), True)
assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \
gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \
gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \
re(a)/2 - re(b)/2), S.Half), True)
# TODO products of besselk are a mess
mt = MT(exp(-x/2)*besselk(a, x/2), x, s)
mt0 = gammasimp(trigsimp(gammasimp(mt[0].expand(func=True))))
assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(S.Half - s)/(
(cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1))
assert mt[1:] == ((Max(-re(a), re(a)), oo), True)
# TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done
# TODO various strange products of special orders
@slow
def test_expint():
from sympy.functions.elementary.miscellaneous import Max
from sympy.functions.special.error_functions import Ci, E1, Si
from sympy.simplify.simplify import simplify
aneg = Symbol('a', negative=True)
u = Symbol('u', polar=True)
assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True)
assert inverse_mellin_transform(gamma(s)/s, s, x,
(0, oo)).rewrite(expint).expand() == E1(x)
assert mellin_transform(expint(a, x), x, s) == \
(gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True)
# XXX IMT has hickups with complicated strips ...
assert simplify(unpolarify(
inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x,
(1 - aneg, oo)).rewrite(expint).expand(func=True))) == \
expint(aneg, x)
assert mellin_transform(Si(x), x, s) == \
(-2**s*sqrt(pi)*gamma(s/2 + S.Half)/(
2*s*gamma(-s/2 + 1)), (-1, 0), True)
assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
/(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
== Si(x)
assert mellin_transform(Ci(sqrt(x)), x, s) == \
(-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S.Half)), (0, 1), True)
assert inverse_mellin_transform(
-4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S.Half)),
s, u, (0, 1)).expand() == Ci(sqrt(u))
@slow
def test_inverse_mellin_transform():
from sympy.core.function import expand
from sympy.functions.elementary.miscellaneous import (Max, Min)
from sympy.functions.elementary.trigonometric import cot
from sympy.simplify.powsimp import powsimp
from sympy.simplify.simplify import simplify
IMT = inverse_mellin_transform
assert IMT(gamma(s), s, x, (0, oo)) == exp(-x)
assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x)
assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \
(x**2 + 1)*Heaviside(1 - x)/(4*x)
# test passing "None"
assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \
-x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)
assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \
-x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)
# test expansion of sums
assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x
# test factorisation of polys
r = symbols('r', real=True)
assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo)
).subs(x, r).rewrite(sin).simplify() \
== sin(r)*Heaviside(1 - exp(-r))
# test multiplicative substitution
_a, _b = symbols('a b', positive=True)
assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a)
assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b)
def simp_pows(expr):
return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp)
# Now test the inverses of all direct transforms tested above
# Section 8.4.2
nu = symbols('nu', real=True)
assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1)
assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x)
assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \
== (1 - x)**(beta - 1)*Heaviside(1 - x)
assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
s, x, (-oo, None))) \
== (x - 1)**(beta - 1)*Heaviside(x - 1)
assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \
== (1/(x + 1))**rho
assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c)
*gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi,
s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \
== (x**c - d**c)/(x - d)
assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s)
*gamma(-c/2 - s)/gamma(1 - c - s),
s, x, (0, -re(c)/2))) == \
(1 + sqrt(x + 1))**c
assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s)
/gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \
b**(a - 1)*(b**2*(sqrt(1 + x/b**2) + 1)**a + x*(sqrt(1 + x/b**2) + 1
)**(a - 1))/(b**2 + x)
assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s)
/ gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \
b**c*(sqrt(1 + x/b**2) + 1)**c
# Section 8.4.5
assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x)
assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \
log(x)**3*Heaviside(x - 1)
assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1)
assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1)
assert IMT(pi/(s*sin(2*pi*s)), s, x, (Rational(-1, 2), 0)) == log(sqrt(x) + 1)
assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x)
# TODO
def mysimp(expr):
from sympy.core.function import expand
from sympy.simplify.powsimp import powsimp
from sympy.simplify.simplify import logcombine
return expand(
powsimp(logcombine(expr, force=True), force=True, deep=True),
force=True).replace(exp_polar, exp)
assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [
log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1),
log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
1)*Heaviside(-x + 1)]
# test passing cot
assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [
log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1),
-log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
1)*Heaviside(-x + 1), ]
# 8.4.14
assert IMT(-gamma(s + S.Half)/(sqrt(pi)*s), s, x, (Rational(-1, 2), 0)) == \
erf(sqrt(x))
# 8.4.19
assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \
== besselj(a, 2*sqrt(x))
assert simplify(IMT(2**a*gamma(S.Half - 2*s)*gamma(s + (a + 1)/2)
/ (gamma(1 - s - a/2)*gamma(1 - 2*s + a)),
s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \
sin(sqrt(x))*besselj(a, sqrt(x))
assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S.Half - 2*s)
/ (gamma(S.Half - s - a/2)*gamma(1 - 2*s + a)),
s, x, (-re(a)/2, Rational(1, 4)))) == \
cos(sqrt(x))*besselj(a, sqrt(x))
# TODO this comes out as an amazing mess, but simplifies nicely
assert simplify(IMT(gamma(a + s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
s, x, (-re(a), S.Half))) == \
besselj(a, sqrt(x))**2
assert simplify(IMT(gamma(s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)),
s, x, (0, S.Half))) == \
besselj(-a, sqrt(x))*besselj(a, sqrt(x))
assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
/ (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
*gamma(a/2 + b/2 - s + 1)),
s, x, (-(re(a) + re(b))/2, S.Half))) == \
besselj(a, sqrt(x))*besselj(b, sqrt(x))
# Section 8.4.20
# TODO this can be further simplified!
assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) *
gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) /
(pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
s, x,
(Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S.Half))) == \
besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) -
besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b)
# TODO more
# for coverage
assert IMT(pi/cos(pi*s), s, x, (0, S.Half)) == sqrt(x)/(x + 1)
def test_fourier_transform():
from sympy.core.function import (expand, expand_complex, expand_trig)
from sympy.polys.polytools import factor
from sympy.simplify.simplify import simplify
FT = fourier_transform
IFT = inverse_fourier_transform
def simp(x):
return simplify(expand_trig(expand_complex(expand(x))))
def sinc(x):
return sin(pi*x)/(pi*x)
k = symbols('k', real=True)
f = Function("f")
# TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x)
a = symbols('a', positive=True)
b = symbols('b', positive=True)
posk = symbols('posk', positive=True)
# Test unevaluated form
assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k)
assert inverse_fourier_transform(
f(k), k, x) == InverseFourierTransform(f(k), k, x)
# basic examples from wikipedia
assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a
# TODO IFT is a *mess*
assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a
# TODO IFT
assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \
1/(a + 2*pi*I*k)
# NOTE: the ift comes out in pieces
assert IFT(1/(a + 2*pi*I*x), x, posk,
noconds=False) == (exp(-a*posk), True)
assert IFT(1/(a + 2*pi*I*x), x, -posk,
noconds=False) == (0, True)
assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True),
noconds=False) == (0, True)
# TODO IFT without factoring comes out as meijer g
assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \
1/(a + 2*pi*I*k)**2
assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \
b/(b**2 + (a + 2*I*pi*k)**2)
assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a)
assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2)
assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2)
# TODO IFT (comes out as meijer G)
# TODO besselj(n, x), n an integer > 0 actually can be done...
# TODO are there other common transforms (no distributions!)?
def test_sine_transform():
t = symbols("t")
w = symbols("w")
a = symbols("a")
f = Function("f")
# Test unevaluated form
assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w)
assert inverse_sine_transform(
f(w), w, t) == InverseSineTransform(f(w), w, t)
assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w)
assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t)
assert sine_transform((1/sqrt(t))**3, t, w) == 2*sqrt(w)
assert sine_transform(t**(-a), t, w) == 2**(
-a + S.Half)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2)
assert inverse_sine_transform(2**(-a + S(
1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S.Half), w, t) == t**(-a)
assert sine_transform(
exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2))
assert inverse_sine_transform(
sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t)
assert sine_transform(
log(t)/t, t, w) == sqrt(2)*sqrt(pi)*-(log(w**2) + 2*EulerGamma)/4
assert sine_transform(
t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2))
assert inverse_sine_transform(
sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)), w, t) == t*exp(-a*t**2)
def test_cosine_transform():
from sympy.functions.special.error_functions import (Ci, Si)
t = symbols("t")
w = symbols("w")
a = symbols("a")
f = Function("f")
# Test unevaluated form
assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w)
assert inverse_cosine_transform(
f(w), w, t) == InverseCosineTransform(f(w), w, t)
assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w)
assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t)
assert cosine_transform(1/(
a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a)
assert cosine_transform(t**(
-a), t, w) == 2**(-a + S.Half)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2)
assert inverse_cosine_transform(2**(-a + S(
1)/2)*w**(a - 1)*gamma(-a/2 + S.Half)/gamma(a/2), w, t) == t**(-a)
assert cosine_transform(
exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2))
assert inverse_cosine_transform(
sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t)
assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt(
t)), t, w) == a*exp(-a**2/(2*w))/(2*w**Rational(3, 2))
assert cosine_transform(1/(a + t), t, w) == sqrt(2)*(
(-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi)
assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half, 0), ()), (
(S.Half, 0, 0), (S.Half,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t)
assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg(
((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi))
assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1))
def test_hankel_transform():
r = Symbol("r")
k = Symbol("k")
nu = Symbol("nu")
m = Symbol("m")
a = symbols("a")
assert hankel_transform(1/r, r, k, 0) == 1/k
assert inverse_hankel_transform(1/k, k, r, 0) == 1/r
assert hankel_transform(
1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2)
assert inverse_hankel_transform(
2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m)
assert hankel_transform(1/r**m, r, k, nu) == (
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2))
assert inverse_hankel_transform(2**(-m + 1)*k**(
m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m)
assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \
2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S(
3)/2)*gamma(nu + Rational(3, 2))/sqrt(pi)
assert inverse_hankel_transform(
2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - Rational(3, 2))*gamma(
nu + Rational(3, 2))/sqrt(pi), k, r, nu) == r**nu*exp(-a*r)
def test_issue_7181():
assert mellin_transform(1/(1 - x), x, s) != None
def test_issue_8882():
# This is the original test.
# from sympy import diff, Integral, integrate
# r = Symbol('r')
# psi = 1/r*sin(r)*exp(-(a0*r))
# h = -1/2*diff(psi, r, r) - 1/r*psi
# f = 4*pi*psi*h*r**2
# assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True
# To save time, only the critical part is included.
F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \
sin(s*atan(sqrt(1/a**2)/2))*gamma(s)
raises(IntegralTransformError, lambda:
inverse_mellin_transform(F, s, x, (-1, oo),
**{'as_meijerg': True, 'needeval': True}))
def test_issue_12591():
x, y = symbols("x y", real=True)
assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y)